zoukankan      html  css  js  c++  java
  • 15 Independent Alleles

    Problem

    Figure 2. The probability of each outcome for the sum of the values on two rolled dice (black and white), broken down depending on the number of pips showing on each die. You can verify that 18 of the 36 equally probable possibilities result in an odd sum.

    Two events AA and BB are independent if Pr(A and B)Pr(A and B) is equal to Pr(A)×Pr(B)Pr(A)×Pr(B). In other words, the events do not influence each other, so that we may simply calculate each of the individual probabilities separately and then multiply.

    More generally, random variables XX and YY are independent if whenever AA and BB are respective events for XX and YYAA and BB are independent (i.e., Pr(A and B)=Pr(A)×Pr(B)Pr(A and B)=Pr(A)×Pr(B)).

    As an example of how helpful independence can be for calculating probabilities, let XX and YY represent the numbers showing on two six-sided dice. Intuitively, the number of pips showing on one die should not affect the number showing on the other die. If we want to find the probability that X+YX+Y is odd, then we don't need to draw a tree diagram and consider all possibilities. We simply first note that for X+YX+Y to be odd, either XX is even and YY is odd or XX is odd and YY is even. In terms of probability, Pr(X+Y is odd)=Pr(X is even and Y is odd)+Pr(X is odd and Y is even)Pr(X+Y is odd)=Pr(X is even and Y is odd)+Pr(X is odd and Y is even). Using independence, this becomes [Pr(X is even)×Pr(Y is odd)]+[Pr(X is odd)×Pr(Y is even)][Pr(X is even)×Pr(Y is odd)]+[Pr(X is odd)×Pr(Y is even)], or (12)2+(12)2=12(12)2+(12)2=12. You can verify this result in Figure 2, which shows all 36 outcomes for rolling two dice.

    Given: Two positive integers kk (k7k≤7) and NN (N2kN≤2k). In this problem, we begin with Tom, who in the 0th generation has genotype Aa Bb. Tom has two children in the 1st generation, each of whom has two children, and so on. Each organism always mates with an organism having genotype Aa Bb.

    Return: The probability that at least NN Aa Bb organisms will belong to the kk-th generation of Tom's family tree (don't count the Aa Bb mates at each level). Assume that Mendel's second law holds for the factors.

    Sample Dataset

    2 1
    

    Sample Output

    0.684


    方法一:
    import itertools
    def f(k,n):
        p = []
        child_num = 2**k
        for i in range(n):
            p.append(len(list(itertools.combinations([x for x in range(child_num)],i)))*(0.25**i)*(0.75**(child_num-i)))
            # combinations('ABCD', 2)		AB AC AD BC BD CD
        return 1-sum(p)
    
    print f(5,8)
    

      

  • 相关阅读:
    5个示例带你学习AngularJS
    快速入门:十分钟学会Python
    Memcache知识点梳理
    用Phaser实现Flappy Bird 游戏
    7 个顶级的 HTML5 Canvas 动画赏析
    避坑宝典:如何选择HTML5游戏引擎
    电商平台10大商业与盈利模式
    【英文版本】Android开源项目分类汇总
    Android精品开源整理
    Android开源项目汇总【转】
  • 原文地址:https://www.cnblogs.com/think-and-do/p/7283246.html
Copyright © 2011-2022 走看看