zoukankan      html  css  js  c++  java
  • 15 Independent Alleles

    Problem

    Figure 2. The probability of each outcome for the sum of the values on two rolled dice (black and white), broken down depending on the number of pips showing on each die. You can verify that 18 of the 36 equally probable possibilities result in an odd sum.

    Two events AA and BB are independent if Pr(A and B)Pr(A and B) is equal to Pr(A)×Pr(B)Pr(A)×Pr(B). In other words, the events do not influence each other, so that we may simply calculate each of the individual probabilities separately and then multiply.

    More generally, random variables XX and YY are independent if whenever AA and BB are respective events for XX and YYAA and BB are independent (i.e., Pr(A and B)=Pr(A)×Pr(B)Pr(A and B)=Pr(A)×Pr(B)).

    As an example of how helpful independence can be for calculating probabilities, let XX and YY represent the numbers showing on two six-sided dice. Intuitively, the number of pips showing on one die should not affect the number showing on the other die. If we want to find the probability that X+YX+Y is odd, then we don't need to draw a tree diagram and consider all possibilities. We simply first note that for X+YX+Y to be odd, either XX is even and YY is odd or XX is odd and YY is even. In terms of probability, Pr(X+Y is odd)=Pr(X is even and Y is odd)+Pr(X is odd and Y is even)Pr(X+Y is odd)=Pr(X is even and Y is odd)+Pr(X is odd and Y is even). Using independence, this becomes [Pr(X is even)×Pr(Y is odd)]+[Pr(X is odd)×Pr(Y is even)][Pr(X is even)×Pr(Y is odd)]+[Pr(X is odd)×Pr(Y is even)], or (12)2+(12)2=12(12)2+(12)2=12. You can verify this result in Figure 2, which shows all 36 outcomes for rolling two dice.

    Given: Two positive integers kk (k7k≤7) and NN (N2kN≤2k). In this problem, we begin with Tom, who in the 0th generation has genotype Aa Bb. Tom has two children in the 1st generation, each of whom has two children, and so on. Each organism always mates with an organism having genotype Aa Bb.

    Return: The probability that at least NN Aa Bb organisms will belong to the kk-th generation of Tom's family tree (don't count the Aa Bb mates at each level). Assume that Mendel's second law holds for the factors.

    Sample Dataset

    2 1
    

    Sample Output

    0.684


    方法一:
    import itertools
    def f(k,n):
        p = []
        child_num = 2**k
        for i in range(n):
            p.append(len(list(itertools.combinations([x for x in range(child_num)],i)))*(0.25**i)*(0.75**(child_num-i)))
            # combinations('ABCD', 2)		AB AC AD BC BD CD
        return 1-sum(p)
    
    print f(5,8)
    

      

  • 相关阅读:
    JAVA课程课后作业之使用递归完成回文
    原码、补码,反码以及JAVA中数值采用哪种码表示
    JAVA课后作业01
    java开学考试有感以及源码
    自动生成30道小学四则运算题目
    统计文档中单词出现频率
    JAVA课程课后作业03之动手动脑
    暑假假期周进度报告(第八周)
    字节流FileInputStream FileOutputStream四种读写,包装流BufferedOutputStream BufferedInputSream 缓冲区默认8192字节
    多态性
  • 原文地址:https://www.cnblogs.com/think-and-do/p/7283246.html
Copyright © 2011-2022 走看看