zoukankan      html  css  js  c++  java
  • 南方电网用电时间序列分析

    总则

    我们进行预测的总的原则是:认识事物的发展变化规律,利用规律的必然性,是进行科学预测所应遵循的总的原则。
    这个总原则实际上就是事物发展的

    • “惯性”原则——事物变化发展的延续性;
    • “类推”原则——事物发展的类似性;
    • “相关”原则——事物的变化发展是相互联系的;
    • “概率”原则——事物发展的推断预测结果能以较大概率出现,则结果成立、可用

    观察问题

    • 序列是否在固定水平上下变动?
    • 此水平是否也在变动?
    • 是否有某种上升或下降的趋势呢?
    • 是否存在有季节性的模式?
    • 是否季节性的模式也在变更呢?
    • 是否存在周期性规律和模式?

    考虑因素

    • 长期趋势
    • 季节性变动
    • 周期性变动
    • 随机影响

    预测模型(方法)

    • 指数平滑法
      描述时间序列数据的变化规律和行为,不去试图解释和理解这种变化的原因。例如:您可能发现在过去的一年里,三月和九月都会出现销售的高峰,您可能希望继续保持这样,尽管您不知道为什么。
    • ARIMA
      ARIMA模型全称为差分自回归移动平均模型,即是Autoregressive Integrated Moving Average Model
      描述时间序列数据的变化规律和行为,它允许模型中包含趋势变动、季节变动、循环变动和随机波动等综合因素影响。具有较高的预测精度,可以把握过去数据变动模式,有助于解释预测变动规律,回答为什么这样。

    使用SPSS进行分析

    • 选择第一个个案的数据,存储在t1.sav

    • 定义日期

    得到从201001到201410月的数据

    • 创建时序图
      得到一个较为直观的有功功率的趋势,便于选择较好的数据模型

    此序列整体呈现一个下降的趋势,无明显周期性变化,在每年的3-5月月份左右变化较大出现用电高峰。

    • 尝试模型
      当对数据由一定的了解之后开始尝试不同模型的构建,spss提供三大类预测方法.

    • 专家建模

    • 指数平滑
      指数平滑法有助于预测存在趋势和/或季节的序列,此处数据同时 体现上述两种特征。创建最适当的指数平滑模型包括确定模型类 型(此模型是否需要包含趋势和/或季节),然后获取最适合选 定模型的参数。

    • ARIMA
      ARIMA模型是自回归AR和移动平均MA加上差分考虑,ARIMA模型比较复杂,原理还不是非常明白。不过依然可以借助spss可是尝试不同参数看到应用效果。

    • 使用简单模型进行的拟合

    查看摘要,R方值0.76 较好的拟合效果

    后续...

    参考资料

    本博客文章除特别声明,全部都是原创! 尊重原创,转载请注明: 转载自thinkml(http://www.cnblogs.com/thinkml) 访问更多内容 请访问个人博客 http://me.needpp.com
  • 相关阅读:
    vue2.0是不支持通过下标来更改数组的,无法做到响应式
    C# 深拷贝 Bitmap对象示例
    vscode终端中文乱码
    TkbmMemTable使用总结
    openssl 证书概念介绍
    openssl源码介绍
    python变量赋值特性
    openssl安装
    github开源协议选择
    NLP 多分类神经网络
  • 原文地址:https://www.cnblogs.com/thinkml/p/4170310.html
Copyright © 2011-2022 走看看