zoukankan      html  css  js  c++  java
  • Few Shot Learning

    **Few Shot Learning New approach** ---- In fact, a novel parameter updating method, replacing the backpropagation algorithm. Let's begin from the math, $x$ be the input, $yleftarrow f(x| heta)$ is the inference model formulation, and $y$ is the ouput of AI system with parameter of $ heta$. $R$ be the reward, given $Rleftarrow psi(y,hat{y})$, denotes that $R$ is derivated from $y$ and $hat{y}$, normally we see this as a reward function, which is fixed. $left$ defined as the **Reward-Environment-Actor** triplet. This is similar to which described in reinforcement learning. $Delta{ heta}leftarrow g(left|eta)$ is the gradient generator. $g(cdot)$ becomes the core issue of the training of ANN, since I believe it's the **GRADIENTS** that **SHAPE** our model. A more flexiable and delicated gradient generation algorithm is deserved of study. The parameter updating equation remains the same: $ heta_{t+1}leftarrow heta_t + Delta{ heta_t} $. Thus we have derived a novel gradient generator with parameter $eta$, the meta settings for a AI learning system, which makes it a **META LEARNING** problem. For a meta learning task, it is necessary to consider about the generability of model, which refers to the robustness of the performance transferring between datasets or data splits. Now, we obtain the overall optimization objective of a transferring between data splits $mathbb{D}_1$ and $mathbb{D}_2$ as follow, $$ argmax_{eta}quad psi(f(x_{t+1}| heta_t + g(left|eta), hat{y}_{t+1}), forall x_tinmathbb{D}_1, x_{t+1}inmathbb{D}_2 $$
  • 相关阅读:
    jq常用操作
    Vue过滤器
    NodeJS跨域问题
    js获取url参数(通用方法)
    jq动画实现左右滑动
    vue-cli3.0 gui(一)
    微信小程序无法定位
    java连接数据库报了ssl连接的警告
    node——module.exports
    node——Commonjs
  • 原文地址:https://www.cnblogs.com/thisisajoke/p/11287111.html
Copyright © 2011-2022 走看看