题目链接
以下除法均指除后下取整
[prod_{i=1}^n prod_{j=1}^mf(gcd(i,j))\
=prod_{x}f(x)^{sum_i sum_j [gcd(i,j)=x] } \
=prod_{x}f(x)^{ sum_{x|d}
mu(frac{d}{x})frac{n}{d}
frac{m}{d} }\
=prod_{d}(prod_{x|d} f(x)^{mu(frac{d}{x})} )^{frac{n}{d}frac{m}{d}}]
然后把中间那个括号里的东西看成(g(d))预处理,即可做到(O(nlogn))预处理(O(sqrt n *logn))询问
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<vector>
#include<algorithm>
#include<cmath>
#define P puts("lala")
#define cp cerr<<"lala"<<endl
#define ln putchar('
')
#define pb push_back
#define fi first
#define se second
#define mkp make_pair
using namespace std;
inline int read()
{
char ch=getchar();int g=1,re=0;
while(ch<'0'||ch>'9') {if(ch=='-')g=-1;ch=getchar();}
while(ch<='9'&&ch>='0') re=(re<<1)+(re<<3)+(ch^48),ch=getchar();
return re*g;
}
typedef long long ll;
typedef pair<int,int> pii;
const int N=1000050;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
inline ll qpow(ll a,ll n)
{
ll ans=1;
for(;n;n>>=1,a=a*a%mod) if(n&1) ans=ans*a%mod;
return ans;
}
int f[N],finv[N],g[N],ginv[N],prime[N],cnt=0,mu[N];
bool isnotprime[N];
void init()
{
int n=N-50;
f[1]=1; g[1]=1;
for(int i=2;i<=n;++i) f[i]=(f[i-1]+f[i-2])%mod,g[i]=1;
for(int i=1;i<=n;++i) finv[i]=qpow(f[i],mod-2);
isnotprime[1]=1; mu[1]=1;
for(int i=2;i<=n;++i)
{
if(!isnotprime[i]) prime[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*prime[j]<=n;++j)
{
isnotprime[i*prime[j]]=1;
if(!(i%prime[j])) break;
mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<=n;++i) for(int j=i;j<=n;j+=i)
{
if(mu[j/i]>0) g[j]=1ll*g[j]*f[i]%mod;
else if(!mu[j/i]) ;
else g[j]=1ll*g[j]*finv[i]%mod;
}
g[0]=1; ginv[0]=1;
for(int i=1;i<=n;++i) g[i]=1ll*g[i]*g[i-1]%mod;
for(int i=1;i<=n;++i) ginv[i]=qpow(g[i],mod-2);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);freopen("1.out","w",stdout);
#endif
init();
int T=read();
for(int cas=1;cas<=T;++cas)
{
int n=read(),m=read();
int M=min(n,m),ans=1;
for(int i=1,j;i<=M;i=j+1)
{
j=min(n/(n/i),m/(m/i));
ans=1ll*ans*qpow(1ll*g[j]*ginv[i-1]%mod,1ll*(n/i)*(m/i))%mod;
}
printf("%d
",ans);
}
return 0;
}