zoukankan      html  css  js  c++  java
  • Codeforces 914C

    The Travelling Salesman spends a lot of time travelling so he tends to get bored. To pass time, he likes to perform operations on numbers. One such operation is to take a positive integer x and reduce it to the number of bits set to 1 in the binary representation of x. For example for number 13 it's true that 1310 = 11012, so it has 3 bits set and 13 will be reduced to 3 in one operation.

    He calls a number special if the minimum number of operations to reduce it to 1 is k.

    He wants to find out how many special numbers exist which are not greater than n. Please help the Travelling Salesman, as he is about to reach his destination!

    Since the answer can be large, output it modulo 109 + 7.

    Input

    The first line contains integer n (1 ≤ n < 21000).

    The second line contains integer k (0 ≤ k ≤ 1000).

    Note that n is given in its binary representation without any leading zeros.

    Output

    Output a single integer — the number of special numbers not greater than n, modulo 109 + 7.

    Examples

    Input
    110
    2
    Output
    3
    Input
    111111011
    2
    Output
    169

    Note

    In the first sample, the three special numbers are 3, 5 and 6. They get reduced to 2 in one operation (since there are two set bits in each of 3, 5 and 6) and then to 1 in one more operation (since there is only one set bit in 2).

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #define maxn 10010
    #define mod 1000000007
    using namespace std;
    char s[maxn];
    int n,k,f[maxn],ans,C[1010][1010];
    int count(int x){
        int res=0;
        while(x){
            if(x&1)res++;
            x>>=1;
        }
        return res;
    }
    int make(int x){
        int op=0;
        while(x!=1){
            if(f[x]){return f[x]+op;}
            op++;
            x=count(x);
        }
        return op;
    }
    int main(){
        C[0][0]=1;
        for(int i=1;i<=1001;i++){
            C[i][0]=1;
            for(int j=1;j<=1001;j++){
                C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
            }
        }
        scanf("%s",s+1);
        n=strlen(s+1);
        scanf("%d",&k);
        if(k==0){
            puts("1");
            return 0;
        }
        for(int i=1;i<=1001;i++)
            f[i]=make(i);
    //    for(int i=1;i<=10;i++)printf("%d ",f[i]);
        int num=0,ans=0;
        for(int i=1;i<=n;i++){
            if(s[i]=='0')continue;
            for(int j=max(num,1);j<n;j++){
                if(f[j]==k-1)
                    ans=(ans+C[n-i][j-num])%mod;
            }
            num++;
        }
        if(k==1)ans=(ans-1+mod)%mod;
        if(f[num]==k-1)ans=(ans+1)%mod;
        printf("%d
    ",ans);
        return 0;
    }
  • 相关阅读:
    BZOJ3514:GERALD07加强版(LCT,主席树)
    BZOJ2729:[HNOI2012]排队(组合数学)
    BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)
    BZOJ3123:[SDOI2013]森林(主席树,启发式合并)
    BZOJ3786:星系探索(Splay,括号序)
    BZOJ2212:[POI2011]Tree Rotations(线段树合并)
    BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)
    CF613D:Kingdom and its Cities(树形DP,虚树)
    BZOJ3611:[HEOI2014]大工程(树形DP,虚树)
    BZOJ2286:[SDOI2011]消耗战(树形DP,虚树)
  • 原文地址:https://www.cnblogs.com/thmyl/p/12293487.html
Copyright © 2011-2022 走看看