zoukankan      html  css  js  c++  java
  • 洛谷P1099 树网的核

    P1099 树网的核

    题目描述

    设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点。

    路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和。我们称d(a, b)为a, b两结点间的距离。

      D(v, P)=min{d(v, u), u为路径P上的结点}。

    树网的直径:树网中最长的路径成为树网的直径。对于给定的树网T,直径不一定是唯一的,但可以证明:各直径的中点(不一定恰好是某个结点,可能在某条边的内部)是唯一的,我们称该点为树网的中心。

    偏心距ECC(F):树网T中距路径F最远的结点到路径F的距离,即

    ECC(F)=max{d(v, F),v∈V}

    任务:对于给定的树网T=(V, E, W)和非负整数s,求一个路径F,他是某直径上的一段路径(该路径两端均为树网中的结点),其长度不超过s(可以等于s),使偏心距ECC(F)最小。我们称这个路径为树网T=(V, E, W)的核(Core)。必要时,F可以退化为某个结点。一般来说,在上述定义下,核不一定只有一个,但最小偏心距是唯一的。

    下面的图给出了树网的一个实例。图中,A-B与A-C是两条直径,长度均为20。点W是树网的中心,EF边的长度为5。如果指定s=11,则树网的核为路径DEFG(也可以取为路径DEF),偏心距为8。如果指定s=0(或s=1、s=2),则树网的核为结点F,偏心距为12。

    输入输出格式

    输入格式:

    输入文件core.in包含n行:

    第1行,两个正整数n和s,中间用一个空格隔开。其中n为树网结点的个数,s为树网的核的长度的上界。设结点编号以此为1,2,……,n。

    从第2行到第n行,每行给出3个用空格隔开的正整数,依次表示每一条边的两个端点编号和长度。例如,“2 4 7”表示连接结点2与4的边的长度为7。

    输出格式:

    输出文件core.out只有一个非负整数,为指定意义下的最小偏心距。

    输入输出样例

    输入样例#1:
    5 2
    1 2 5
    2 3 2
    2 4 4
    2 5 3
    
    
    输出样例#1:
    5
    
    输入样例#2:
    8 6
    1 3 2
    2 3 2 
    3 4 6
    4 5 3
    4 6 4
    4 7 2
    7 8 3
    
    输出样例#2:
    5

    说明

    40%的数据满足:5<=n<=15

    70%的数据满足:5<=n<=80

    100%的数据满足:5<=n<=300,0<=s<=1000。边长度为不超过1000的正整数

    NOIP 2007 提高第四题

    /*
        先floyed跑一遍
        然后找出一个直径来,直接枚举找就行 
        直径上的点都存到一个数组里
        循环从这个数组抽出两个点作为F的两个端点,然后计算对于这段路径的偏心距,所有偏心距取个小就好了 
        计算点到路径的最短距离dis[z][x]+dis[z][y]-dis[x][y])>>1 
    */
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    using namespace std;
    #define maxn 305
    int n,s,dis[maxn][maxn],center[maxn];
    int main(){
        freopen("Cola.txt","r",stdin);
        scanf("%d%d",&n,&s);int x,y,z;
        memset(dis,0x3f,sizeof(dis));
        for(int i=1;i<=n;i++)dis[i][i]=0;
        for(int i=1;i<n;i++){
            scanf("%d%d%d",&x,&y,&z);
            dis[x][y]=dis[y][x]=z;
        }
        for(int k=1;k<=n;k++)
            for(int i=1;i<=n;i++)
                for(int j=1;j<=n;j++)
                if(i!=j&&i!=k&&j!=k)
                    dis[i][j]=min(dis[i][k]+dis[k][j],dis[i][j]);
        int mxi=1,mxj=1;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                if(dis[mxi][mxj]<dis[i][j]&&dis[i][j]<100000000)mxi=i,mxj=j;
        int q=0;
        for(int i=1;i<=n;i++)
            if(dis[mxi][i]+dis[mxj][i]==dis[mxi][mxj])center[++q]=i;//寻找这个直径上的所有点 
        int ans=1e9;
        for(int i=1;i<=q;i++){
            for(int j=1;j<=q;j++){
                int x=center[i],y=center[j];//枚举F的左右端点 
                if(dis[x][y]<=s){
                    int ans0=0;
                    for(int z=1;z<=n;z++)
                        ans0=max(ans0,(dis[z][x]+dis[z][y]-dis[x][y])>>1);
                    ans=min(ans0,ans);
                }
            }
        }
        printf("%d",ans);
        return 0;
    }
  • 相关阅读:
    mysql 数据库备份
    半同步复制
    mysql在线热备
    mysqlxtrabackup备份
    MySQL备份与恢复
    Mysql语句类型
    MySQL的体系结构
    MySQL介绍及安装
    Shell-02-if
    Shell 脚本进阶,经典用法及其案例
  • 原文地址:https://www.cnblogs.com/thmyl/p/7700728.html
Copyright © 2011-2022 走看看