SETI
给出定义f(k) = ∑(0<=i<=n-1)ai*k^i(mod p),给出n个式子的结果f(1)~f(n),用一个字符串表示f的值,*表示0,a~z表示1~26,最终要解出a0~a(n-1)
f(1) = a0 * 1^0 + a1 * 1^1 + a2 * 1^2 ,,,,,,,a(n-1) * 1^n
f(2) = a0 * 1^0 + a1 * 2^1 + a2 * 2^2 ,,,,,,,a(n-1) * 2^n
f(3) = a0 * 3^0 + a1 * 3^1 + a2 * 3^2 ,,,,,,,a(n-1) * 3^n
,,,
,,,
f(n) = a0 * n^0 + a1 * n^1 + a2 * n^2 ,,,,,,,a(n-1) * n^n
/* 和poj2947是差不多的,只是多了快速幂 求可行系数时设了个p变量,和输入的p重名了,调试了很久,以后不能在这样拉! */ #include<iostream> #include<cstdio> #include<cstring> #define maxn 100 using namespace std; int n,p,a[maxn][maxn],ans[maxn]; char s[maxn]; int Pow(int x,int y){ int res=1; while(y){ if(y&1)res=res*x%p; x=x*x%p; y>>=1; } return res; } void guass(){ for(int i=1,k=1;i<=n&&k<=n;i++,k++){//枚举每个未知量 int pos=n+1; for(int j=i;j<=n;j++)if(a[j][k]){pos=j;break;} if(pos>n){k++;i--;continue;} for(int j=k;j<=n+1;j++)swap(a[i][j],a[pos][j]); for(int j=i+1;j<=n;j++){//将下面每一行的改元都消去 if(!a[j][k])continue; int tmp=a[j][k]; for(int l=k;l<=n+1;l++){ a[j][l]=a[i][l]*tmp-a[j][l]*a[i][k]; a[j][l]=(a[j][l]%p+p)%p; } } } for(int i=n;i>=1;i--){ for(int j=i+1;j<=n;j++){ a[i][n+1]-=ans[j]*a[i][j]; a[i][n+1]=(a[i][n+1]%p+p)%p; } while(a[i][n+1]%a[i][i])a[i][n+1]+=p; ans[i]=(a[i][n+1]/a[i][i])%p; } for(int i=1;i<=n;i++)printf("%d ",ans[i]);puts(""); } int main(){ freopen("Cola.txt","r",stdin); int T; scanf("%d",&T); while(T--){ memset(a,0,sizeof(a)); scanf("%d%s",&p,s+1); n=strlen(s+1); for(int i=1;i<=n;i++){ if(s[i]=='*')a[i][n+1]=0; else a[i][n+1]=s[i]-'a'+1; a[i][n+1]%=p; } for(int i=1;i<=n;i++) for(int j=0;j<n;j++) a[i][j+1]=Pow(i,j); guass(); } }