zoukankan      html  css  js  c++  java
  • 数据治理与数据分析的关系

    分析与治理双管齐下

    大数据就像一座漂浮在海洋中的冰山,第一眼只能看到冰山的一角,绝大部分都隐藏在表面之下。分析是让大家明确冰山裸露在外的外壳、根据漂流走向预测未来的轨迹路线,而治理就是将隐藏在冰山之下东西挖出来,找准形成原因、勾勒肉眼不及的海下之貌,分析与治理两者相辅相成、缺一不可。


    数据分析与数据治理
    分析离不开治理
    如果只分析无治理,那么随着企业的发展壮大上述问题肯定会接踵而至,没有一个完全可落地的数据治理规划,数据分析实践和效果也无法持续发展。比如,企业无法访问或集成他们所拥有的数据,因为这些数据仍然被锁在各部门的数据孤岛上,获取的路径复杂且低效,对于企业而言无疑加剧了分析的难度。

    再者,对于企业来说人员流动是不可避免的,所以不能将希望寄托于一群人或者一个部门身上,而是应该在使用数据和分析工具时更加的标准化和流程化,从上而下推行数据治理的规划、章程及实施。

    治理离不开分析
    对于一家企业而言,如果在没有业务改进的前提下单纯启动数据治理的项目也是非常难的。所以,企业应该瞄准一个能够提供价值的重点领域来开展数据分析项目,并行开展数据治理,这种方法使团队能够前瞻性的定义目标,并确定满足目标所需要的数据和工具。换句话说,这种方法量化了数据治理带来的价值。

    通过这个数据分析的项目,人们见识到了治理后的数据是多么的好用与高效,使得业务、信息技术和数据三者之间存在一个良性的协同关系,于是在此分析项目的基础上,治理的规划也不断的被推进和延续。

    数据管控闭环,决胜未来
    分析的目的是用来挖掘数据价值辅助决策,原则上这一步已经是最接近终端结论的一步了。而治理则是一系列的前提,他的出现让数据的呈现更加精准、明晰、受控,只有当分析与治理两条腿走路,双管齐下形成数据管控闭环,企业才能走得愈加飞快而稳健。

    原文:https://www.esensoft.com/industry-news/data-analysis-3234.html

  • 相关阅读:
    012 spring retry重试原理的解析
    011 @Retryable的使用
    010 @ControllerAdvice
    009 SpringBoot+Swagger的使用
    008 @Import作用
    007 SpringBoot的@EnableAutoConfiguration注解
    001 品牌管理案例
    000 vue各种基本指令
    013 JS
    002 docker基本的命令
  • 原文地址:https://www.cnblogs.com/thomasbc/p/15117805.html
Copyright © 2011-2022 走看看