传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4542
思路:当P!=2或5时,显然10^x%P!=0
把后缀模P的值搞出来
于是问题就便成询问区间内%P为x的分别有多少个
这个再套一个莫队就可以了。
#include<cmath> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> const int maxn=100010; typedef long long ll; using namespace std; struct quer{int l,r,id;}q[maxn]; ll ans[maxn],mod,a[maxn],n,m,pw[maxn],b[maxn],c[maxn],bel[maxn],tot,sz,cnt[maxn],now=0,scnt[maxn],ssum[maxn];char s[maxn]; bool cmp(quer a,quer b){return bel[a.l]!=bel[b.l]?bel[a.l]<bel[b.l]:a.r<b.r;} bool back(quer a,quer b){return a.id<b.id;} void init(){ scanf("%lld%s%lld",&mod,s+1,&m),n=strlen(s+1),sz=(int)sqrt(n); pw[0]=1;for (int i=1;i<=n;i++) pw[i]=pw[i-1]*10%mod; for (int i=1;i<=n;i++) a[i]=s[i]-'0',bel[i]=(i-1)/sz+1; for (int i=n;i;i--) b[i]=(b[i+1]+a[i]*pw[n-i])%mod;//后缀和的模 b[n+1]=0; memcpy(c,b,sizeof(c)),sort(c+1,c+2+n); tot=unique(c+1,c+2+n)-c-1; for (int i=1;i<=n+1;i++) b[i]=lower_bound(c+1,c+2+tot,b[i])-c; for (int i=1;i<=m;i++) scanf("%d%d",&q[i].l,&q[i].r),q[i].id=i,q[i].r++; } inline void modify(int p,int op){ now-=cnt[b[p]]*(cnt[b[p]]-1)/2; cnt[b[p]]+=op; now+=cnt[b[p]]*(cnt[b[p]]-1)/2; } void work(){ sort(q+1,q+1+m,cmp); for (int i=1,l=1,r=0;i<=m;i++){ for (;r<q[i].r;r++) modify(r+1,1); for (;r>q[i].r;r--) modify(r, -1); for (;l<q[i].l;l++) modify(l, -1); for (;l>q[i].l;l--) modify(l-1,1); ans[q[i].id]=now; } for (int i=1;i<=m;i++) printf("%lld ",ans[i]); } void spw(){ for (int i=1;i<=n;i++) scnt[i]=scnt[i-1]+(a[i]%mod==0),ssum[i]=ssum[i-1]+(a[i]%mod==0?i:0); for (int i=1;i<=m;i++){ int x=q[i].l,y=q[i].r-1; printf("%lld ",ssum[y]-ssum[x-1]-1ll*(x-1)*(scnt[y]-scnt[x-1])); } } int main(){ init(); if (mod==2||mod==5) spw();else work(); return 0; }