zoukankan      html  css  js  c++  java
  • Blow up the city

    Blow up the city

    时间限制: 1 Sec  内存限制: 128 MB

    题目描述

    Country A and B are at war. Country A needs to organize transport teams to deliver supplies toward some command center cities.

    In order to ensure the delivery works efficiently, all the roads in country A work only one direction. Therefore, map of country A can be regarded as DAG( Directed Acyclic Graph ). Command center cities only received supplies and not send out supplies.

    Intelligence agency of country B is credibly informed that there will be two cities carrying out a critical transporting task in country A. 

    As long as **any** one of the two cities can not reach a command center city, the mission fails and country B will hold an enormous advantage. Therefore, country B plans to destroy one of the n cities in country A and all the roads directly connected. (If a city carrying out the task is also a command center city, it is possible to destroy the city to make the mission fail)

    Now country B has made q hypotheses about the two cities carrying out the critical task.
    Calculate the number of plan that makes the mission of country A fail.
     

    输入

    The first line contains a integer T (1≤T≤10), denoting the number of test cases.

    In each test case, the first line are two integers n,m, denoting the number of cities and roads(1≤n≤100,000,1≤m≤200,000).
    Then m lines follow, each with two integers u and v, which means there is a directed road from city u to v (1≤u,v≤n,u≠v).

    The next line is a integer q, denoting the number of queries (1≤q≤100,000)
    And then q lines follow, each with two integers a and b, which means the two cities carrying out the critical task are a and b (1≤a,b≤n,a≠b).

    A city is a command center if and only if there is no road from it (its out degree is zero).

    输出

    For each query output a line with one integer, means the number of plan that makes the mission of country A fail.

    样例输入

    2
    8 8
    1 2
    3 4
    3 5
    4 6
    4 7
    5 7
    6 8
    7 8
    2
    1 3
    6 7
    3 2
    3 1
    3 2
    2
    1 2
    3 1
    

    样例输出

    4
    3
    2
    2

    题意:有一个DAG,求有多少方案,使得割掉图中一个点,图上特定两个点不能都到达出度为0的点。
    思路:反向建边,连接超级源点到原图中出度为0的点。那么题目就变成了:有一个DAG,求有多少种方案,使得割掉图中一个点,从超级源点不能都到达两个特定点。这就是支配树问题。支配树是一个有向图抽象出来的树,它满足某一点到根节点的路径上的点,都是根结点在原图中到达这个点的必经点。
    #include<bits/stdc++.h>
    #define N 100005
    using namespace std;
     
    struct ss
    {
        int u,v,next;
    };
    ss edg[2*N];
    int head[N],sum_edge=0;
     
    void addedge(int u,int v)
    {
        edg[sum_edge]=(ss){u,v,head[u]};
        head[u]=sum_edge++;
    }
     
    int grand[N][25]={0};
    int depth[N],DEPTH;
     
    void deal(int u,int v)
    {
        grand[v][0]=u;
        depth[v]=depth[u]+1;
     
        for(int i=1;i<=DEPTH;i++)
        {
            grand[v][i]=grand[grand[v][i-1]][i-1];
        }
    }
     
    int lca(int a,int b)
    {
        if(a==0||b==0)return a+b;
         
        if(depth[a]>depth[b])swap(a,b);
        for(int i=DEPTH;i>=0;i--)
        if(depth[a]<depth[b]&&depth[grand[b][i]]>=depth[a])b=grand[b][i];
     
        for(int i=DEPTH;i>=0;i--)
        if(grand[a][i]!=grand[b][i])
        {
            a=grand[a][i];
            b=grand[b][i];
        }
     
        if(a!=b)
        {
            return grand[a][0];
        }
        return a;
    }
     
    void init(int n)
    {
        DEPTH=floor(log(n + 0.0) / log(2.0));
        memset(grand[0],0,sizeof(grand[0]));
        depth[0]=0;
        sum_edge=0;
        memset(head,-1,sizeof(head));
    }
     
    void getControl_tree(int n,int s)//从s出发可以到达图的所有点,s为支配树的根 
    {
        int fa[N]={0};
        int rd[N]={0};
        stack<int>Stack;
        
        for(int i=1;i<=n;i++)
        for(int j=head[i];j!=-1;j=edg[j].next)rd[edg[j].v]++;
        
        Stack.push(s);
        
        while(!Stack.empty())
        {
            int x=Stack.top();
            Stack.pop();
            deal(fa[x],x);//建支配树 
            
            for(int i=head[x];i!=-1;i=edg[i].next)
            {
                int v=edg[i].v;
                fa[v]=lca(fa[v],x);
                rd[v]--;
                if(!rd[v])Stack.push(v);
            }
        }
    } 
    
    
    int main()
    {
         int t;
         scanf("%d",&t);
         while(t--)
         {
             int n,m;
             scanf("%d %d",&n,&m);
             init(n);
             
             int rd[N]={0};
             
             while(m--)
             {
                int u,v;
                scanf("%d %d",&u,&v);
                addedge(v,u);
                rd[u]++;
             }
             
             for(int i=1;i<=n;i++)if(!rd[i])addedge(n+1,i);
             getControl_tree(n+1,n+1);
             
             scanf("%d",&m);
             while(m--)
             {
                 int u,v;
                 scanf("%d %d",&u,&v);
                 int LCA=lca(u,v);
                 printf("%d
    ",depth[u]+depth[v]-depth[LCA]-1-1+1);
             }
        }
        return 0;
    }
    View Code

    支配树参考博客:https://www.cnblogs.com/fenghaoran/p/dominator_tree.html

  • 相关阅读:
    升级xcode7.0 第三方库不能用的解决方法(bitcode是什么鬼?)
    java调用C#的dll
    微信JS SDK Demo
    【jQuery】smartMenu右键自定义上下文菜单插件(似web QQ)
    搭建Windows SVN服务器及TortoiseSVN使用帮助和下载
    微信jsSDK开发
    用c#开发微信(10) JSSDK 基本用法 分享接口“发送到朋友”
    MVC4.0网站发布和部署到IIS7.0上的方法
    C#的事件处理机制
    ASP.Net MVC开发基础学习笔记(1):走向MVC模式
  • 原文地址:https://www.cnblogs.com/tian-luo/p/11267123.html
Copyright © 2011-2022 走看看