Different Integers
Given a sequence of integers a1, a2, ..., an and q pairs of integers (l1, r1), (l2, r2), ..., (lq, rq), find count(l1, r1), count(l2, r2), ..., count(lq, rq) where count(i, j) is the number of different integers among a1, a2, ..., ai, aj, aj + 1, ..., an.
输入描述:
The input consists of several test cases and is terminated by end-of-file.
The first line of each test cases contains two integers n and q.
The second line contains n integers a1,a2,.....an.
The i-th of the following q lines contains two integers l and r.
输出描述:
For each test case, print q integers which denote the result.
输入
3 2 1 2 1 1 2 1 3 4 1 1 2 3 4 1 3
输出
2 1 3
备注:
* 1 ≤ n, q ≤ 100000
* 1 ≤ ai ≤ n
* 1 ≤ l,r≤ n
* The number of test cases does not exceed 10.
把序列加长一倍,就变成了连续区间求不同数的个数。
我们遍历整个序列,当有相同的数时,保留后一个数,删除前一个数,这样当遍历到第x个数的时候,可能的序列就变为了 a1 , a2 , * , *, a5, a6 ......ax;
其中*代表这个数已经被删除了
这样若要求区间[i,x]内不同数的个数,直接就是从i到x内不为*的数的个数,若把存在的数权值改为1,那么答案也就是sum(x)-sum(i-1),这样就可以考虑用树状数组来优化,注意这个性质求的区间其右端点必须是x。
要注意遍历序列之前要先把查询离线存起来,然后对r进行升序排列,保证按顺序遍历序列的时候,查询区间右端点是依次出现的。
#include<bits/stdc++.h> #define N 200500 using namespace std; int last[N],team[N]; int c[N]; int Ans[N]; void updata(int x,int v) { while(x<N) { c[x]+=v; x+=x&(-x); } } int Sum(int x) { int ans=0; while(x>0) { ans+=c[x]; x-=x&(-x); } return ans; } typedef struct { int l,r,ans,index; }ss; ss qu[N]; int cmp(ss a,ss b) { return a.r<b.r; } int main() { int n,q,sum; while(scanf("%d %d",&n,&q)==2) { memset(last,0,sizeof(last)); memset(c,0,sizeof(c)); sum=0; for(int i=1;i<=n;i++) { scanf("%d",&team[i]); team[i+n]=team[i]; } for(int i=1;i<=q;i++)scanf("%d %d",&qu[i].r,&qu[i].l),qu[i].index=i,qu[i].r+=n; sort(qu+1,qu+1+q,cmp); // for(int i=1;i<=q;i++)printf("%d %d ",qu[i].l,qu[i].r); int c1=1; for(int i=1;i<=q;i++) { for(int j=c1;j<=qu[i].r;j++) { if(last[team[j]]==0) { updata(j,1); last[team[j]]=j; } else { updata(j,1); updata(last[team[j]],-1); last[team[j]]=j; } } c1=qu[i].r+1; Ans[qu[i].index]=Sum(qu[i].r)-Sum(qu[i].l-1); } for(int i=1;i<=q;i++)printf("%d ",Ans[i]); } return 0; }