zoukankan      html  css  js  c++  java
  • 动态规划 跳台阶问题的三种解法

    You are climbing a stair case. It takes n steps to reach to the top.

    Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

    Note: Given n will be a positive integer.

    Example 1:

    Input: 2
    Output: 2
    Explanation: There are two ways to climb to the top.
    1. 1 step + 1 step
    2. 2 steps
    

    Example 2:

    Input: 3
    Output: 3
    Explanation: There are three ways to climb to the tNop.
    1. 1 step + 1 step + 1 step
    2. 1 step + 2 steps
    3. 2 steps + 1 step


    这个题很显然是用动态规划的做法,人在跳最后一步时,有两种可能,人可能跳一个台阶,也可能跳两个台阶,如果说n个台阶的走法是F(n),那么F(n) = F(n-1) + F(n-2),当n=1时,F(n) = 1,当n = 2时,F(n) = 2;
    public int climbStairs1(int n) {
    		if (n <= 0)
    			return -1;
    		else if (n == 1)
    			return 1;
    		else if (n == 2)
    			return 2;
    		else
    			return climbStairs1(n - 1) + climbStairs1(n - 2);
    	}
    

    这种解法时间复杂度很糟糕,在编译器中,每次递归计算的值都没有被保存下来,不建议采用。为了每次递归计算的值保存下来,我们创建一个空间大小为n+1的数组dp[],空间和时间复杂度都是O(n)。

    public int climbStairs2(int n) {
            if (n <= 0)
                return -1;
            else if (n == 1)
                return 1;
            int[] dp = new int[n + 1];
            dp[1] = 1;
            dp[2] = 2;
            for (int i = 3; i <= n; i++)
                dp[i] = dp[i - 1] + dp[i - 2];
            return dp[n];
        }

    在计算的过程中我们发现,dp[]数组满足斐波那契数列关系,可以利用这一特点只定义三个变量,由此来降低空间复杂度,使得空间复杂度优化到O(n).

    public int climbStairs3(int n) {
            if (n == 1)
                return 1;
            int first = 1;
            int second = 2;
            for (int i = 3; i <= n; i++) {
                int third = first + second;
                first = second;
                second = third;
            }
            return second;
        }

      

  • 相关阅读:
    OGG_GoldenGate数据控制进程Manager(案例)
    OGG_GoldenGate安装和环境搭建(案例)
    OGG_Oracle GoldenGate简介(概念)
    DBA_Oracle Erp R12系统文件结构(概念)
    PLSQL_统计信息系列10_统计信息过旧导致程序出现性能问题
    PLSQL_统计信息系列09_统计信息在不同数据库中迁移
    Hadoop2源码分析-准备篇
    高可用Hadoop平台-答疑篇
    高可用Hadoop平台-实战尾声篇
    高可用Hadoop平台-实战
  • 原文地址:https://www.cnblogs.com/tiandiou/p/9692802.html
Copyright © 2011-2022 走看看