zoukankan      html  css  js  c++  java
  • K satisfied number

    K satisfied number

    Time Limit:1000MS  Memory Limit:65536K
    Total Submit:2 Accepted:2

    Description

    A non-negative interger is a K satisfied number 
    if and only if this interger does not exist two adjacent 
    digits, the absolute value of the difference between them 
    is greater than K. 

    For example: 
    0, 2, 5, 36 and 236 are 3 satisfied number, and are 4 satisfied number too. 
    but 237 is not a 3 satisfied number, while it is a 4 satisfied number, 
    for its second digit is 3 and its third digit is 7, 
    and the absolute value of the difference between 3 and 7 is 4, 
    which is greater than 3. 

    Now give two interger N and K. 
    Please tell me how many K satisfied numbers there are for all 
    the N-digit numbers (can not have leading 0). 
    Because the result may be very large, 
    we make the result module 2008512 for the output.

    Input

    The input contains many test cases. 
    For each test case, the input contains only one line 
    with two integers N ( 1 <= N <= 10^9 ) and K ( 0 <= K <= 9 ). 

    Output

    For each test case output the answer on a single line.

    Sample Input

     

    1 1
    2 0
    5423 8
    3243421 5
    2 1

     

    Sample Output

     

    10
    9
    260649
    1928206
    26

     

    Source

    8th SCUPC

     

     

     

    考虑这样一个图g,节点为0、1、2、3、4、5、6、7、8、9。若|i-j|<=m,g[i][j]=1;当n大于1时,矩阵的n-1次幂中的每个元素都是对应n个节点的一条路径,每个元素的值是这个路径的走法个数。(考虑矩阵的乘法的性质。)这道题就迎刃而解了。注意n==1时,要特殊处理,以及数是没有前导零的。

     

     1 #include<stdio.h>
     2 #include<string.h>
     3 const int mod=2008512;
     4 int abs(int a){return a>0?a:-a;}
     5 struct Matrix
     6 {
     7        int a[10][10];
     8        Matrix operator *(Matrix &l)
     9        {
    10               Matrix temp;
    11               memset(temp.a,0,sizeof(temp.a));
    12               for(int i=0;i<10;i++)
    13                   for(int j=0;j<10;j++)
    14                      for(int k=0;k<10;k++)
    15                           temp.a[i][j]=(temp.a[i][j]+(int)(((a[i][k]%mod)*(long long)(l.a[k][j]))%mod))%mod;
    16               return temp;
    17        }
    18 }M;
    19 Matrix pow(Matrix &t,int k)
    20 {
    21        Matrix temp;
    22        if(k==1) return t;
    23        temp=t*t;
    24        if(k&1) return pow(temp,k/2)*t;
    25        return pow(temp,k/2);
    26 }
    27 int main()
    28 {
    29     int n,m;
    30     while(scanf("%d%d",&n,&m)!=EOF)
    31     {
    32           if(n==1)
    33           {
    34                   puts("10");
    35                   continue;
    36           }
    37           for(int i=0;i<10;i++)
    38               for(int j=0;j<10;j++)
    39                    if(abs(i-j)<=m) M.a[i][j]=1;
    40                    else M.a[i][j]=0;
    41           Matrix temp=pow(M,n-1);
    42           int ans=0;
    43           for(int i=1;i<10;i++)
    44               for(int j=0;j<10;j++)
    45                   ans=(ans+temp.a[i][j])%mod;
    46           printf("%d\n",ans);
    47     }
    48 }

     

     

  • 相关阅读:
    并发之CAS无锁技术
    dubbo-admin打包和zookper安装
    读书笔记<深入理解JVM>01 关于OutOfMemoryError 堆空间的溢出
    关于mybatis和spring复合pom的异常
    ElasticSearch入门一
    Niginx +Tomcat 集群搭建
    使用自定义线程池优化EchoServer
    使用线程池优化Echo模型
    获取请求主机IP地址,如果通过代理进来,则透过防火墙获取真实IP地址
    java中double和float精度丢失问题
  • 原文地址:https://www.cnblogs.com/tiankonguse/p/2601593.html
Copyright © 2011-2022 走看看