zoukankan      html  css  js  c++  java
  • hdu4861(游戏)

    数论问题:试题

    题目没有看懂,但是解题方法感觉的确是非常巧妙的,应该是属于数论一方面的试题。

    试题分析:

    首先是DouBiNan先取,所以肯定优先选取剩余中值最大的,于是不存在说DouBiNan值小的情况,只有大于和小于。
    然后,对于val(i)=1i+2i+⋯+(p−1)i%p来说,只有当i=ϕ(p)=p−1(p为素数)时,val(i)=p−1,其他情况下val(i)=0,那么只要确定说有多少个i是非0的即可,如果是偶数则输出NO,奇数输出YES。

    证明,假设p有原根g,那么1i,2i,…,(p−1)i即是g1∗i,g2∗i,…,g(p−1)∗i的一个排序,因为对于gk来说,k从1到p-1,gk均不相同,并且为1到p-1。
    于是val(i)=gi∗(1−gi∗(p−1))1−gi
    根据费马小定理,gi∗(p−1)%p=1
    所以有val(i)=gi∗(1−1)1−gi=0

      1. p为质数,所以一定有原根
      2. 原根,即gi%p≠gj%p(i≠j且i,j<p)
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    
    using namespace std;
    typedef long long ll;
    ll k, p;
    
    int main () {
    while (cin >> k >> p) {
    ll t = k / (p-1); 
    if (t&1)
    cout << "YES" << endl;
    else
    cout << "NO" << endl;
    }
    return 0;
    }
    我要坚持一年,一年后的成功才是我想要的。
  • 相关阅读:
    第三周课程总结
    Java第一次学习总结
    第十二周编程总结
    第九周作业
    第八周作业
    第五周编程总结
    第三周作业
    第二周编程总结
    JAVA第二周学习总结
    2019春总结作业
  • 原文地址:https://www.cnblogs.com/tianxia2s/p/3926648.html
Copyright © 2011-2022 走看看