zoukankan      html  css  js  c++  java
  • search(13)- elastic4s-histograms:聚合直方图

    在聚合的分组统计中我们会面临两种分组元素类型:连续型如时间,自然数等、离散型如地点、产品等。离散型数据本身就代表不同的组别,但连续型数据则需要手工按等长间隔进行切分了。下面是一个按价钱段聚合的例子:

    POST /cartxns/_search
    {
      "size" : 1,
      "aggs": {
        "sales_per_pricerange": {
          "histogram": {
            "field": "price",
            "interval": 20000
          },
          "aggs": {
            "total sales": {
              "sum": {
                "field": "price"
              }
            }
          }
        }
      }
     }
    }

    在上面这个例子中我们把价钱按20000进行分段。得出0-19999,20000-39999,40000-59999 ... 价格段的度量:

      "aggregations" : {
        "sales_per_pricerange" : {
          "buckets" : [
            {
              "key" : 0.0,
              "doc_count" : 3,
              "total sales" : {
                "value" : 37000.0
              }
            },
            {
              "key" : 20000.0,
              "doc_count" : 4,
              "total sales" : {
                "value" : 95000.0
              }
            },
            {
              "key" : 40000.0,
              "doc_count" : 0,
              "total sales" : {
                "value" : 0.0
              }
            },
            {
              "key" : 60000.0,
              "doc_count" : 0,
              "total sales" : {
                "value" : 0.0
              }
            },
            {
              "key" : 80000.0,
              "doc_count" : 1,
              "total sales" : {
                "value" : 80000.0
              }
            }
          ]
        }
      }

    在elastic4s中是这样表达的:

      val aggHist = search("cartxns").aggregations(
        histogramAggregation("sales_per_price")
          .field("price")
          .interval(20000).subAggregations(
          sumAggregation("total_sales").field("price")
        )
      )
      println(aggHist.show)
    
      val histResult = client.execute(aggHist).await
    
      if (histResult.isSuccess)
        histResult.result.aggregations.histogram("sales_per_price").buckets
            .foreach(hb => println(s"${hb.key},${hb.docCount}:${hb.sum("total_sales").value}"))
      else println(s"error: ${histResult.error.reason}")
    
    ....
    
    POST:/cartxns/_search?
    StringEntity({"aggs":{"sales_per_price":{"histogram":{"interval":20000.0,"field":"price"},"aggs":{"total_sales":{"sum":{"field":"price"}}}}}},Some(application/json))
    0.0,3:37000.0
    20000.0,4:95000.0
    40000.0,0:0.0
    60000.0,0:0.0
    80000.0,1:80000.0

    下面这个按车款分组统计的就是一个离散元素的聚合统计了:

    POST /cartxns/_search
    {
      "size" : 1,
      "aggs": {
        "avage price per model" : {
            "terms": {"field" : "make.keyword"},
            "aggs": {
              "average price": {
                "avg": {"field": "price"}
              },
              "max price" : {
                "max": {
                  "field": "price"
                }
              },
              "min price" : {
                "min": {
                  "field": "price"
                }
              }
              
            }
         }
      }
    }

    我们可以得到每一款车的平均售价、最低最高售价:

      "aggregations" : {
        "avage price per model" : {
          "doc_count_error_upper_bound" : 0,
          "sum_other_doc_count" : 0,
          "buckets" : [
            {
              "key" : "honda",
              "doc_count" : 3,
              "max price" : {
                "value" : 20000.0
              },
              "average price" : {
                "value" : 16666.666666666668
              },
              "min price" : {
                "value" : 10000.0
              }
            },
            {
              "key" : "ford",
              "doc_count" : 2,
              "max price" : {
                "value" : 30000.0
              },
              "average price" : {
                "value" : 27500.0
              },
              "min price" : {
                "value" : 25000.0
              }
            },
            {
              "key" : "toyota",
              "doc_count" : 2,
              "max price" : {
                "value" : 15000.0
              },
              "average price" : {
                "value" : 13500.0
              },
              "min price" : {
                "value" : 12000.0
              }
            },
            {
              "key" : "bmw",
              "doc_count" : 1,
              "max price" : {
                "value" : 80000.0
              },
              "average price" : {
                "value" : 80000.0
              },
              "min price" : {
                "value" : 80000.0
              }
            }
          ]
        }
      }

    elastic4s示范如下:

      val aggDisc = search("cartxns").aggregations(
        termsAgg("prices_per_model","make.keyword").subAggregations(
          avgAgg("average_price","price"),
          minAgg("min_price","price"),
          maxAgg("max_price","price")
        )
      )
      println(aggDisc.show)
      val discResult = client.execute(aggDisc).await
    
      if (discResult.isSuccess)
        discResult.result.aggregations.terms("prices_per_model").buckets
          .foreach(mb =>
            println(s"${mb.key},${mb.docCount}:${mb.avg("average_price").value}," +
              s"${mb.min("min_price").value.getOrElse(0)}," +
              s"${mb.max("max_price").value.getOrElse(0)}"))
      else println(s"error: ${discResult.error.causedBy.getOrElse("unknown")}")
    
    ...
    
    POST:/cartxns/_search?
    StringEntity({"aggs":{"prices_per_model":{"terms":{"field":"make.keyword"},"aggs":{"average_price":{"avg":{"field":"price"}},"min_price":{"min":{"field":"price"}},"max_price":{"max":{"field":"price"}}}}}},Some(application/json))
    honda,3:16666.666666666668,10000.0,20000.0
    ford,2:27500.0,25000.0,30000.0
    toyota,2:13500.0,12000.0,15000.0
    bmw,1:80000.0,80000.0,80000.0

    date_histogram是一种按时间间隔聚合的统计方法。对于按时间趋势变化的数据分析十分有用:

    POST /cartxns/_search
    {
       "aggs": {
         "sales_per_month": {
           "date_histogram": {
             "field": "sold",
             "calendar_interval":"1M",
             "format": "yyyy-MM-dd"
           }
         }
       }
    }
    
    ...
    
      "aggregations" : {
        "sales_per_month" : {
          "buckets" : [
            {
              "key_as_string" : "2014-01-01",
              "key" : 1388534400000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2014-02-01",
              "key" : 1391212800000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2014-03-01",
              "key" : 1393632000000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2014-04-01",
              "key" : 1396310400000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2014-05-01",
              "key" : 1398902400000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2014-06-01",
              "key" : 1401580800000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2014-07-01",
              "key" : 1404172800000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2014-08-01",
              "key" : 1406851200000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2014-09-01",
              "key" : 1409529600000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2014-10-01",
              "key" : 1412121600000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2014-11-01",
              "key" : 1414800000000,
              "doc_count" : 2
            }
          ]
        }
      }

    上面这个例子产生以月为单元的bucket。elastic4s示范:

      val aggDateHist = search("cartxns").aggregations(
        dateHistogramAggregation("sales_per_month")
          .field("sold")
          .calendarInterval(DateHistogramInterval.Month)
          .format("yyyy-MM-dd")
          .minDocCount(1)
      )
      println(aggDateHist.show)
    
      val dtHistResult = client.execute(aggDateHist).await
    
      if (dtHistResult.isSuccess)
        dtHistResult.result.aggregations.dateHistogram("sales_per_month").buckets
            .foreach(db => println(s"${db.date},${db.docCount}"))
      else println(s"error: ${dtHistResult.error.causedBy.getOrElse("unknown")}")
    
    ...
    
    POST:/cartxns/_search?
    StringEntity({"aggs":{"sales_per_month":{"date_histogram":{"calendar_interval":"1M","min_doc_count":1,"format":"yyyy-MM-dd","field":"sold"}}}},Some(application/json))
    2014-01-01,1
    2014-02-01,1
    2014-05-01,1
    2014-07-01,1
    2014-08-01,1
    2014-10-01,1
    2014-11-01,2

    在以月划分bucket后可以再进行每个月的深度聚合:

    POST /cartxns/_search
    {
       "aggs": {
         "sales_per_month": {
           "date_histogram": {
             "field": "sold",
             "calendar_interval":"1M",
             "format": "yyyy-MM-dd"
           },
           "aggs": {
             "per_make_sum": {
               "terms": {
                 "field": "make.keyword",
                 "size": 10
               },
               "aggs": {
                 "sum_price": {
                   "sum": {"field": "price"}
                 }
               }
             },
             "total_sum": {
               "sum": {
                 "field": "price"
               }
             }
           }
         }
       }
    }

    我们可以得到每个月的销售总额、每个车款每个月的销售,如下:

    "aggregations" : {
        "sales_per_month" : {
          "buckets" : [
            {
              "key_as_string" : "2014-01-01",
              "key" : 1388534400000,
              "doc_count" : 1,
              "per_make_sum" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "bmw",
                    "doc_count" : 1,
                    "sum_price" : {
                      "value" : 80000.0
                    }
                  }
                ]
              },
              "total_sum" : {
                "value" : 80000.0
              }
            },
            {
              "key_as_string" : "2014-02-01",
              "key" : 1391212800000,
              "doc_count" : 1,
              "per_make_sum" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "ford",
                    "doc_count" : 1,
                    "sum_price" : {
                      "value" : 25000.0
                    }
                  }
                ]
              },
              "total_sum" : {
                "value" : 25000.0
              }
            },
            {
              "key_as_string" : "2014-03-01",
              "key" : 1393632000000,
              "doc_count" : 0,
              "per_make_sum" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [ ]
              },
              "total_sum" : {
                "value" : 0.0
              }
            },
            {
              "key_as_string" : "2014-04-01",
              "key" : 1396310400000,
              "doc_count" : 0,
              "per_make_sum" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [ ]
              },
              "total_sum" : {
                "value" : 0.0
              }
            },
            {
              "key_as_string" : "2014-05-01",
              "key" : 1398902400000,
              "doc_count" : 1,
              "per_make_sum" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "ford",
                    "doc_count" : 1,
                    "sum_price" : {
                      "value" : 30000.0
                    }
                  }
                ]
              },
              "total_sum" : {
                "value" : 30000.0
              }
            },
            {
              "key_as_string" : "2014-06-01",
              "key" : 1401580800000,
              "doc_count" : 0,
              "per_make_sum" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [ ]
              },
              "total_sum" : {
                "value" : 0.0
              }
            },
            {
              "key_as_string" : "2014-07-01",
              "key" : 1404172800000,
              "doc_count" : 1,
              "per_make_sum" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "toyota",
                    "doc_count" : 1,
                    "sum_price" : {
                      "value" : 15000.0
                    }
                  }
                ]
              },
              "total_sum" : {
                "value" : 15000.0
              }
            },
            {
              "key_as_string" : "2014-08-01",
              "key" : 1406851200000,
              "doc_count" : 1,
              "per_make_sum" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "toyota",
                    "doc_count" : 1,
                    "sum_price" : {
                      "value" : 12000.0
                    }
                  }
                ]
              },
              "total_sum" : {
                "value" : 12000.0
              }
            },
            {
              "key_as_string" : "2014-09-01",
              "key" : 1409529600000,
              "doc_count" : 0,
              "per_make_sum" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [ ]
              },
              "total_sum" : {
                "value" : 0.0
              }
            },
            {
              "key_as_string" : "2014-10-01",
              "key" : 1412121600000,
              "doc_count" : 1,
              "per_make_sum" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "honda",
                    "doc_count" : 1,
                    "sum_price" : {
                      "value" : 10000.0
                    }
                  }
                ]
              },
              "total_sum" : {
                "value" : 10000.0
              }
            },
            {
              "key_as_string" : "2014-11-01",
              "key" : 1414800000000,
              "doc_count" : 2,
              "per_make_sum" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "honda",
                    "doc_count" : 2,
                    "sum_price" : {
                      "value" : 40000.0
                    }
                  }
                ]
              },
              "total_sum" : {
                "value" : 40000.0
              }
            }
          ]
        }
      }

    用elastic4s可以这样写:

      val aggMonthSales= search("cartxns").aggregations(
        dateHistogramAggregation("sales_per_month")
          .field("sold")
          .calendarInterval(DateHistogramInterval.Month)
          .format("yyyy-MM-dd")
          .minDocCount(1).subAggregations(
            termsAgg("month_make","make.keyword").subAggregations(
            sumAggregation("month_total_per_make").field("price")
          ),
          sumAggregation("monthly_total").field("price")
         )
       )
    
      println(aggMonthSales.show)
      
      val monthSalesResult = client.execute(aggMonthSales).await
    
      if (monthSalesResult.isSuccess)
         monthSalesResult.result.aggregations.dateHistogram("sales_per_month").buckets
           .foreach { sb =>
           println(s"${sb.date},${sb.docCount},${sb.sum("monthly_total").value}")
           sb.terms("month_make").buckets
            .foreach(mb =>       
            println(s"${mb.key},${mb.docCount},${mb.sum("month_total_per_make").value}"))
         }
      else println(s"error: ${monthSalesResult.error.causedBy.getOrElse("unknown")}")
    
    
    ...
    
    POST:/cartxns/_search?
    StringEntity({"aggs":{"sales_per_month":{"date_histogram":{"calendar_interval":"1M","min_doc_count":1,"format":"yyyy-MM-dd","field":"sold"},"aggs":{"month_make":{"terms":{"field":"make.keyword"},"aggs":{"month_total_per_make":{"sum":{"field":"price"}}}},"monthly_total":{"sum":{"field":"price"}}}}}},Some(application/json))
    2014-01-01,1,80000.0
    bmw,1,80000.0
    2014-02-01,1,25000.0
    ford,1,25000.0
    2014-05-01,1,30000.0
    ford,1,30000.0
    2014-07-01,1,15000.0
    toyota,1,15000.0
    2014-08-01,1,12000.0
    toyota,1,12000.0
    2014-10-01,1,10000.0
    honda,1,10000.0
    2014-11-01,2,40000.0
    honda,2,40000.0
  • 相关阅读:
    理解Linux系统负荷 和 ubuntu静态、动态设置ip地址
    Kafka笔记--监控系统KafkaOffsetMonitor
    Kafka笔记--使用ubuntu为bocker(服务器)windows做producer和comsumer(客户端)
    Android学习笔记--Broadcast, BroadcastReceiver(广播)
    Java学习笔记--xml构造与解析之Sax的使用
    Android学习笔记--存储方案(SharedPreference、文件IO)
    Android学习笔记--Menu菜单的使用
    Android学习笔记--AlertDialog应用
    Kafka笔记--参数说明及Demo
    Kafka笔记--分布式环境搭建
  • 原文地址:https://www.cnblogs.com/tiger-xc/p/12897279.html
Copyright © 2011-2022 走看看