zoukankan      html  css  js  c++  java
  • 浅谈Slick(3)- Slick201:从fp角度了解Slick

      我在上期讨论里已经成功的创建了一个简单的Slick项目,然后又尝试使用了一些最基本的功能。Slick是一个FRM(Functional Relational Mapper),是为fp编程提供的scala SQL Query集成环境,可以让编程人员在scala编程语言里用函数式编程模式来实现对数据库操作的编程。在这篇讨论里我想以函数式思考模式来加深了解Slick。我对fp编程模式印象最深的就是类型匹配:从参数类型和返回结果类型来了解函数功能。所以上面我所指的函数式思考方式主要是从Slick函数的类型匹配角度来分析函数所起的作用和具体使用方式。

    我们先了解一下建表过程:

     1 import slick.driver.H2Driver.api._
     2 object slick201 {
     3   //projection case classes 表列模版
     4   case class Coffee(
     5                      id: Option[Long]
     6                      ,name: String
     7                      ,sup_ID: Int
     8                      ,price: Double
     9                      ,grade: Grade
    10                      ,total: Int
    11                    )
    12   case class Supplier(
    13                        id: Option[Int]
    14                        ,name: String
    15                        ,address: String
    16                        ,website: Option[String]
    17                      )
    18   //自定义字段
    19   abstract class Grade(points: Int)
    20   object Grade {
    21     case object Premium extends Grade(2)
    22     case object Quality extends Grade(1)
    23     case object Bestbuy extends Grade(0)
    24 
    25     def fromInt(p: Int) = p match {
    26         case 2 => Premium
    27         case 1 => Quality
    28         case 0 => Bestbuy
    29     }
    30     def toInt(g: Grade) = g match {
    31       case Premium => 2
    32       case Quality => 1
    33       case Bestbuy => 0
    34     }
    35     implicit val customColumn: BaseColumnType[Grade] =
    36       MappedColumnType.base[Grade,Int](Grade.toInt, Grade.fromInt)
    37   }
    38   //schema 表行结构定义
    39   class Coffees(tag: Tag) extends Table[Coffee](tag, "COFFEES") {
    40     def id = column[Long]("COF_ID", O.AutoInc, O.PrimaryKey)
    41     def name = column[String]("COF_NAME")
    42     def price = column[Double]("COF_PRICE")
    43     def supID = column[Int]("COF_SUP")
    44     def grade = column[Grade]("COF_GRADE", O.Default(Grade.Bestbuy))
    45     def total = column[Int]("COF_TOTAL", O.Default(0))
    46 
    47     def * = (id.?,name,supID,price,grade,total) <> (Coffee.tupled, Coffee.unapply)
    48 
    49     def supplier = foreignKey("SUP_FK",supID,suppliers)(_.id,onUpdate = ForeignKeyAction.Restrict, onDelete = ForeignKeyAction.Cascade)
    50     def nameidx = index("NM_IX",name,unique = true)
    51   }
    52   val coffees = TableQuery[Coffees]
    53 
    54   class Suppliers(tag: Tag) extends Table[Supplier](tag, "SUPPLIERS") {
    55     def id = column[Int]("SUP_ID", O.PrimaryKey, O.AutoInc)
    56     def name = column[String]("SUP_NAME")
    57     def address = column[String]("SUP_ADDR", O.Default("-"))
    58     def website = column[Option[String]]("SUP_WEB")
    59 
    60     def * = (id.?, name, address, website) <> (Supplier.tupled, Supplier.unapply)
    61     def addidx = index("ADDR_IX",(name,address),unique = true)
    62   }
    63   val suppliers = TableQuery[Suppliers]
    64 
    65 }

    我尽量把经常会遇到的情况如:定义字段、建索引、默认值、自定义字段等都作了尝试。coffees和suppliers代表了最终的数据表Query,def * 定义了这个Query的默认返回结果字段。

    所有的定义都是围绕着表行(Table Row)结构进行的,包括:表属性及操作(Table member methods)、字段(Column)、字段属性(ColumnOptions)。表行定义操作方法基本都在slick.lifted.AbstractTable里、表属性定义在slick.model命名空间里、而大部分的帮助支持函数都在slick.lifted命名空间的其它对象里。

    表行的实际类型如下:

    abstract class Table[T](_tableTag: Tag, _schemaName: Option[String], _tableName: String) extends AbstractTable[T](_tableTag, _schemaName, _tableName) { table => ...}
     
    /** The profile-independent superclass of all table row objects.
      * @tparam T Row type for this table. Make sure it matches the type of your `*` projection. */
    abstract class AbstractTable[T](val tableTag: Tag, val schemaName: Option[String], val tableName: String) extends Rep[T] {...}

    如上所示,Table[T] extends AbstractTable[T]。现在所有表行定义操作函数应该在slick.profile.relationalTableComponent.Table里可以找得到。值得注意的是表行的最终类型是Rep[T],T可能是case class或者Tuple,被升格(lift)到Rep[T]。所以大部分表行定义的支持函数都是在slick.lifted命名空间内的。

    上面我们使用了模版对应表行定义方式,所有列都能和模版case class对应。那么在定义projection def * 时就需要使用<>函数:

      def <>[R : ClassTag](f: (U => R), g: (R => Option[U])) = new MappedProjection[R, U](shape.toNode(value), MappedScalaType.Mapper(g.andThen(_.get).asInstanceOf[Any => Any], f.asInstanceOf[Any => Any], None), implicitly[ClassTag[R]])

    f,g是两个case class <> Tuple转换函数。在上面的例子里我们提供的是tupled和unapply,效果就是这样的:

    1   Coffee.tupled
    2   //res2: ((Option[Long], String, Int, Double, Grade, Int)) => Coffee = <function1>
    3   Coffee.unapply _
    4   //res3: Coffee => Option[(Option[Long], String, Int, Double, Grade, Int)] = <function1>

    res2 >>> 把tuple: (...)转成coffee,res2 >>> 把coffee转成Option[(...)]

    TableQuery[T]继承了Query[T]:slick.lifted.Query.scala

    /** Represents a database table. Profiles add extension methods to TableQuery
      * for operations that can be performed on tables but not on arbitrary
      * queries, e.g. getting the table DDL. */
    class TableQuery[E <: AbstractTable[_]](cons: Tag => E) extends Query[E, E#TableElementType, Seq] {...}
    ...
    sealed trait QueryBase[T] extends Rep[T]
    
    /** An instance of Query represents a query or view, i.e. a computation of a
      * collection type (Rep[Seq[T]]). It is parameterized with both, the mixed
      * type (the type of values you see e.g. when you call map()) and the unpacked
      * type (the type of values that you get back when you run the query).
      *
      * Additional extension methods for queries containing a single column are
      * defined in [[slick.lifted.SingleColumnQueryExtensionMethods]].
      */
    sealed abstract class Query[+E, U, C[_]] extends QueryBase[C[U]] { self =>...}

    所有Query对象里提供的函数TableQuery类都可以调用。上面例子里coffees,suppliers实际是数据库表COFFEES,SUPPLIERS的Query实例,它们的默认字段集如:coffees.result是通过def * 定义的(除非用map或yield改变默认projection)。在slick.profile.RelationalProfile.TableQueryExtensionMethods里还有专门针对TableQuery类型的函数如schema等。

    好了,来到了Query才算真正进入主题。Query可以说是Slick最核心的类型了。所有针对数据库的读写操作都是通过Query产生SQL语句发送到数据库实现的。Query是个函数式类型,即高阶类型Query[A]。A代表生成SQL语句的元素,通过转变A可以实现不同的SQL语句构建。不同功能的Query包括读取(retreive)、插入(insert)、更新(update)、删除(delete)都是通过Query变形(transformation)实现的。所有Query操作函数的款式:Query[A] => Query[B],是典型的函数式编程方式,也是scala集合操作函数款式。我们先从数据读取Query开始,因为上面我们曾经提到过可以通过map来决定新的结果集结构(projection):

     1 val q1 = coffees.result
     2   q1.statements.head
     3   //res0: String = select "COF_ID", "COF_NAME", "COF_SUP", "COF_PRICE", "COF_GRADE", "COF_TOTAL" from "COFFEES"
     4 
     5   val q2 = coffees.map(r => (r.id, r.name)).result
     6   q2.statements.head
     7   //res1: String = select "COF_ID", "COF_NAME" from "COFFEES"
     8 
     9   val q3 = (for (c <- coffees) yield(c.id,c.name)).result
    10   q3.statements.head
    11   //res2: String = select "COF_ID", "COF_NAME" from "COFFEES"

    因为map和flatMap的函数款式是:

    map[A,B](Q[A])(A=>B]):Q[B], flatMap[A,B](Q[A])(A => Q[B]):Q[B]

    所以不同的SQL语句基本上是通过Query[A] => Query[B]这种对高阶类型内嵌元素进行转变的函数式操作方式实现的。下面是一个带筛选条件的Query:

     1   val q = coffees.filter(_.price > 100.0).map(r => (r.id,r.name)).result
     2   q.statements.head
     3   //res3: String = select "COF_ID", "COF_NAME" from "COFFEES" where "COF_PRICE" > 100.0
     4 
     5   val q4 = coffees.filter(_.price > 100.0).take(4).map(_.name).result
     6   q4.statements.head
     7   //res4: String = select "COF_NAME" from "COFFEES" where "COF_PRICE" > 100.0 limit 4
     8 
     9   val q5 = coffees.sortBy(_.id.desc.nullsFirst).map(_.name).drop(3).result
    10   q5.statements.head
    11   //res5: String = select "COF_NAME" from "COFFEES" order by "COF_ID" desc nulls first limit -1 offset 3

    再复杂一点的Query,比如说join两个表:

     1 val q6 = for {
     2     (c,s) <- coffees join suppliers on (_.supID === _.id)
     3   } yield(c.id,c.name,s.name)
     4   q6.result.statements.head
     5   //res6: String = select x2."COF_ID", x2."COF_NAME", x3."SUP_NAME" from "COFFEES" x2, "SUPPLIERS" x3 where x2."COF_SUP" = x3."SUP_ID"
     6   
     7   val q7 = for {
     8     c <- coffees
     9     s <- suppliers.filter(c.supID === _.id)
    10   } yield(c.id,c.name,s.name)
    11   q7.result.statements.head
    12   //res7: String = select x2."COF_ID", x2."COF_NAME", x3."SUP_NAME" from "COFFEES" x2, "SUPPLIERS" x3 where x2."COF_SUP" = x3."SUP_ID"

    还有汇总类型的Query:

    1 coffees.map(_.price).max.result.statements.head
    2   //res10: String = select max("COF_PRICE") from "COFFEES"
    3   coffees.map(_.total).sum.result.statements.head
    4   //res11: String = select sum("COF_TOTAL") from "COFFEES"
    5   coffees.length.result.statements.head
    6   //res12: String = select count(1) from "COFFEES"
    7   coffees.filter(_.price > 100.0).exists.result.statements.head
    8   //res13: String = select exists(select "COF_TOTAL", "COF_NAME", "COF_SUP", "COF_ID", "COF_PRICE", "COF_GRADE" from "COFFEES" where "COF_PRICE" > 100.0)

    Query是个monad,它可以实现函数组合(functional composition)。如上所示:所有Query操作函数都是Query[A]=>Query[B]形式的。由于Query[A]里面的A类型是Rep[T]类型,是SQL语句组件类型。典型函数如flatMap的调用方式是:flatMap{a => MakeQuery(a ...)},可以看到下一个Query的构成可能依赖a值,而a的类型是表行或列定义。所以Query的函数组合就是SQL语句的组合,最终结果是产生目标SQL语句。

    Slick处理数据的方式是通过组合相应的SQL语句后发送给数据库去运算的,相关SQL语句的产生当然是通过Query来实现的:

     1   val qInsert = coffees += Coffee(Some(0),"American",101,56.0,Grade.Bestbuy,0)
     2   qInsert.statements.head
     3 //res10: String = insert into "COFFEES" ("COF_NAME","COF_SUP","COF_PRICE","COF_GRADE","COF_TOTAL")  values (?,?,?,?,?)
     4   val qInsert2 = coffees.map{r => (r.name, r.supID, r.price)} += ("Columbia",101,102.0)
     5   qInsert2.statements.head
     6 //res11: String = insert into "COFFEES" ("COF_NAME","COF_SUP","COF_PRICE")  values (?,?,?)
     7   val qInsert3 = (suppliers.map{r => (r.id,r.name)}).
     8     returning(suppliers.map(_.id)) += (101,"The Coffee Co.,")
     9   qInsert3.statements.head
    10 //res12: String = insert into "SUPPLIERS" ("SUP_NAME")  values (?)

    从qInsert3产生的SQL语句来看:jdbc返回数据后还必须由Slick进一步处理后才能返回用户要求的结果值。下面是一些其它更改数据的Query示范:

    1   val qDelete = coffees.filter(_.price === 0.0).delete
    2   qDelete.statements.head
    3   //res17: String = delete from "COFFEES" where "COFFEES"."COF_PRICE" = 0.0
    4   val qUpdate = for (c <- coffees if (c.name === "American")) yield c.price
    5   qUpdate.update(10.0).statements.head
    6   //res18: String = update "COFFEES" set "COF_PRICE" = ? where "COFFEES"."COF_NAME" = 'American'

    update query必须通过for-comprehension的yield来确定更新字段。
    Slick3.x最大的改进就是采用了functional I/O技术。具体做法就是引进DBIOAction类型,这是一个free monad。通过采用free monad的延迟运算模式来实现数据库操作动作的可组合性(composablility)及多线程运算(concurrency)。

    DBIOAction类型款式如下:

    sealed trait DBIOAction[+R, +S <: NoStream, -E <: Effect] extends Dumpable {
    ...}
    package object dbio {
      /** Simplified type for a streaming [[DBIOAction]] without effect tracking */
      type StreamingDBIO[+R, +T] = DBIOAction[R, Streaming[T], Effect.All]
    
      /** Simplified type for a [[DBIOAction]] without streaming or effect tracking */
      type DBIO[+R] = DBIOAction[R, NoStream, Effect.All]
      val DBIO = DBIOAction
    }

    DBIO[+R]和StreamingDBIO[+R,+T]分别是固定类型参数S和E的类型别名,用它们来简化代码。所有的数据库操作函数包括result、insert、delete、update等都返回DBIOAction类型结果:

      def result: DriverAction[R, S, Effect.Read] = {...}
      def delete: DriverAction[Int, NoStream, Effect.Write] = {...}
      def update(value: T): DriverAction[Int, NoStream, Effect.Write] = {...}
      def += (value: U): DriverAction[SingleInsertResult, NoStream, Effect.Write] = {...}

    上面的DriverAction是DBIOAction的子类。因为DBIOAction是个free monad,所以多个DBIOAction可以进行组合,而在过程中是不会立即产生DBIO副作用的。我们只能通过DBIOAction类型的运算器来对DBIOAction的组合进行运算才会正真进行数据库数据读写。DBIOAction运算函数款式如下:

    /** Run an Action asynchronously and return the result as a Future. */
        final def run[R](a: DBIOAction[R, NoStream, Nothing]): Future[R] = runInternal(a, false)

    run函数返回Future[R],代表在异步线程运算完成后返回R类型值。一般来讲Query.result返回R类型为Seq[?]。

    DBIOAction只是对数据库操作动作的描述,不是实际的读写,所以DBIOAction可以进行组合。所谓组合的意思实际上就是把几个动作连续起来。DBIOAction的函数组件除monad通用的map、flatMap、sequence等,还包括了andThen、zip等合并操作函数,andThen可以返回最后一个动作结果、zip在一个pair里返回两个动作的结果。因为DBIOAction是monad,所以for-comprehension应该是最灵活、最强大的组合方式了。我们来试试用上面Query产生的动作来进行一些组合示范:

    1   val initSupAction = suppliers.schema.create andThen qInsert3
    2   val createCoffeeAction = coffees.schema.create
    3   val insertCoffeeAction = qInsert zip qInsert2
    4   val initSupAndCoffee = for {
    5     _ <- initSupAction
    6     _ <- createCoffeeAction
    7     (i1,i2) <- insertCoffeeAction 
    8   } yield (i1,i2)

    我们可以任意组合这些操作步骤,因为它们的返回结果类型都是DBIOAction[R]:一个free monad。大多数时间这些动作都是按照一定的流程顺序组合的。可能有些时候下一个动作需要依赖上一个动作产生的结果,这个时候用for-comprehension是最适合的了:

     1 //先选出所有ESPRESSO开头的coffee名称,然后逐个删除
     2   val delESAction = (for {
     3     ns <- coffees.filter(_.name.startsWith("ESPRESSO")).map(_.name).result
     4     _ <- DBIO.seq(ns.map(n => coffees.filter(_.name === n).delete): _*)
     5   } yield ()).transactionally
     6   //delESAction: slick.dbio.DBIOAction[Unit,slick.dbio.NoStream,slick.dbio.Effect.Read ...
     7 
     8   //对一个品种价格升10%
     9   def raisePriceAction(i: Long, np: Double, pc: Double) =
    10     (for(c <- coffees if (c.id === i)) yield c.price).update(np * pc)
    11   //raisePriceAction: raisePriceAction[](val i: Long,val np: Double,val pc: Double) => slick.driver.H2Driver.DriverAction[Int,slick.dbio.NoStream,slick.dbio.Effect.Write]
    12   //对所有价格<100的coffee加价
    13   val updatePriceAction = (for {
    14     ips <- coffees.filter(_.price < 100.0).map(r => (r.id, r.price)).result
    15     _ <- DBIO.seq{ips.map { ip => raisePriceAction(ip._1, ip._2, 110.0)}: _* }
    16   } yield()).transactionally
    17   //updatePriceAction: slick.dbio.DBIOAction[Unit,slick.dbio.NoStream,slick.dbio.Effect.Read ...

    另外,像monad的point:successful(R)可以把R升格成DBIOAction,failed(T)可以把T升格成DBIOAction[T]:

    1   DBIO.successful(Supplier(Some(102),"Coffee Company","",None))
    2   //res19: slick.dbio.DBIOAction[Supplier,slick.dbio.NoStream,slick.dbio.Effect] = SuccessAction(Supplier(Some(102),Coffee Company,,None))
    3 
    4   DBIO.failed(new Exception("oh my god..."))
    5   //res20: slick.dbio.DBIOAction[Nothing,slick.dbio.NoStream,slick.dbio.Effect] = FailureAction(java.lang.Exception: oh my god...)

    DBIOAction还有比较完善的事后处理和异常处理机制:

     1 //主要示范事后处理机制用法,不必理会功能的具体目的是否有任何意义
     2   qInsert.andFinally(qDelete)
     3   //res21: slick.dbio.DBIOAction[Int,slick.dbio.NoStream,slick.dbio.Effect.Write with slick.dbio.Effect.Write] = slick.dbio.SynchronousDatabaseAction$$anon$6@1d46b337
     4 
     5   updatePriceAction.cleanUp (
     6     { case Some(e) => initSupAction; DBIO.failed(new Exception("oh my..."))
     7       case _ => qInsert3
     8     }
     9       ,true
    10   )
    11   //res22: slick.dbio.DBIOAction[Unit,slick.dbio.NoStream,slick.dbio.Effect.Read ...
    12 
    13   raisePriceAction(101,10.0,110.0).asTry
    14   //res23: slick.dbio.DBIOAction[scala.util.Try[Int],slick.dbio.NoStream,slick.dbio.Effect.Write] = slick.dbio.SynchronousDatabaseAction$$anon$9@60304a44

    从上面的这些示范例子我们认识到DBIOAction的函数组合就是数据库操作步骤组合、实际上就是程序的组合或者是功能组合:把一些简单的程序组合成功能更全面的程序,然后才运算这个组合而成的程序。DBIOAction的运算函数run的函数款式如下: 

    /** Run an Action asynchronously and return the result as a Future. */
        final def run[R](a: DBIOAction[R, NoStream, Nothing]): Future[R] = runInternal(a, false)

    对DBIOAction进行运算后的结果是个Future类型,也是一个高阶类型,同样可以用map、flatMap、sequence、andThen等泛函组件进行函数组合。可以参考下面的这个示范:

     1   import slick.jdbc.meta.MTable
     2   import scala.concurrent.ExecutionContext.Implicits.global
     3   import scala.concurrent.duration.Duration
     4   import scala.concurrent.{Await, Future}
     5   import scala.util.{Success,Failure}
     6 
     7   val db = Database.forURL("jdbc:h2:mem:test1;DB_CLOSE_DELAY=-1", driver="org.h2.Driver")
     8 
     9   def recreateCoffeeTable: Future[Unit] = {
    10     db.run(MTable.getTables("Coffees")).flatMap {
    11       case tables if tables.isEmpty => db.run(coffees.schema.create).andThen {
    12         case Success(_) => println("coffee table created")
    13         case Failure(e) => println(s"failed to create! ${e.getMessage}")  
    14       }
    15       case _ => db.run((coffees.schema.drop andThen coffees.schema.create)).andThen {
    16         case Success(_) => println("coffee table recreated")
    17         case Failure(e) => println(s"failed to recreate! ${e.getMessage}")
    18       }   
    19     }
    20   }

    好了,下面是这次讨论的示范代码:

      1 import slick.driver.H2Driver.api._
      2 
      3 object slick201 {
      4   //projection case classes 表列模版
      5   case class Coffee(
      6                      id: Option[Long]
      7                      ,name: String
      8                      ,sup_ID: Int
      9                      ,price: Double
     10                      ,grade: Grade
     11                      ,total: Int
     12                    )
     13   case class Supplier(
     14                        id: Option[Int]
     15                        ,name: String
     16                        ,address: String
     17                        ,website: Option[String]
     18                      )
     19   //自定义字段
     20   abstract class Grade(points: Int)
     21   object Grade {
     22     case object Premium extends Grade(2)
     23     case object Quality extends Grade(1)
     24     case object Bestbuy extends Grade(0)
     25 
     26     def fromInt(p: Int) = p match {
     27         case 2 => Premium
     28         case 1 => Quality
     29         case 0 => Bestbuy
     30     }
     31     def toInt(g: Grade) = g match {
     32       case Premium => 2
     33       case Quality => 1
     34       case Bestbuy => 0
     35     }
     36     implicit val customColumn: BaseColumnType[Grade] =
     37       MappedColumnType.base[Grade,Int](Grade.toInt, Grade.fromInt)
     38   }
     39   //schema 表行结构定义
     40   class Coffees(tag: Tag) extends Table[Coffee](tag, "COFFEES") {
     41     def id = column[Long]("COF_ID", O.AutoInc, O.PrimaryKey)
     42     def name = column[String]("COF_NAME")
     43     def price = column[Double]("COF_PRICE")
     44     def supID = column[Int]("COF_SUP")
     45     def grade = column[Grade]("COF_GRADE", O.Default(Grade.Bestbuy))
     46     def total = column[Int]("COF_TOTAL", O.Default(0))
     47 
     48     def * = (id.?,name,supID,price,grade,total) <> (Coffee.tupled, Coffee.unapply)
     49 
     50     def supplier = foreignKey("SUP_FK",supID,suppliers)(_.id,onUpdate = ForeignKeyAction.Restrict, onDelete = ForeignKeyAction.Cascade)
     51     def nameidx = index("NM_IX",name,unique = true)
     52   }
     53   val coffees = TableQuery[Coffees]
     54 
     55   class Suppliers(tag: Tag) extends Table[Supplier](tag, "SUPPLIERS") {
     56     def id = column[Int]("SUP_ID", O.PrimaryKey, O.AutoInc)
     57     def name = column[String]("SUP_NAME")
     58     def address = column[String]("SUP_ADDR", O.Default("-"))
     59     def website = column[Option[String]]("SUP_WEB")
     60 
     61     def * = (id.?, name, address, website) <> (Supplier.tupled, Supplier.unapply)
     62     def addidx = index("ADDR_IX",(name,address),unique = true)
     63   }
     64   val suppliers = TableQuery[Suppliers]
     65 
     66   class Bars(tag: Tag) extends Table[(Int,String)](tag,"BARS") {
     67     def id = column[Int]("BAR_ID",O.AutoInc,O.PrimaryKey)
     68     def name = column[String]("BAR_NAME")
     69     def * = (id, name)
     70   }
     71   val bars = TableQuery[Bars]
     72 
     73   Coffee.tupled
     74   //res2: ((Option[Long], String, Int, Double, Grade, Int)) => Coffee = <function1>
     75   Coffee.unapply _
     76   //res3: Coffee => Option[(Option[Long], String, Int, Double, Grade, Int)] = <function1>
     77 
     78 
     79   val q1 = coffees.result
     80   q1.statements.head
     81   //res0: String = select "COF_ID", "COF_NAME", "COF_SUP", "COF_PRICE", "COF_GRADE", "COF_TOTAL" from "COFFEES"
     82   
     83   val q2 = coffees.map(r => (r.id, r.name)).result
     84   q2.statements.head
     85   //res1: String = select "COF_ID", "COF_NAME" from "COFFEES"
     86 
     87   val q3 = (for (c <- coffees) yield(c.id,c.name)).result
     88   q3.statements.head
     89   //res2: String = select "COF_ID", "COF_NAME" from "COFFEES"
     90 
     91 
     92   val q = coffees.filter(_.price > 100.0).map(r => (r.id,r.name)).result
     93   q.statements.head
     94   //res3: String = select "COF_ID", "COF_NAME" from "COFFEES" where "COF_PRICE" > 100.0
     95 
     96   val q4 = coffees.filter(_.price > 100.0).take(4).map(_.name).result
     97   q4.statements.head
     98   //res4: String = select "COF_NAME" from "COFFEES" where "COF_PRICE" > 100.0 limit 4
     99 
    100   val q5 = coffees.sortBy(_.id.desc.nullsFirst).map(_.name).drop(3).result
    101   q5.statements.head
    102   //res5: String = select "COF_NAME" from "COFFEES" order by "COF_ID" desc nulls first limit -1 offset 3
    103 
    104   val q6 = for {
    105     (c,s) <- coffees join suppliers on (_.supID === _.id)
    106   } yield(c.id,c.name,s.name)
    107   q6.result.statements.head
    108   //res6: String = select x2."COF_ID", x2."COF_NAME", x3."SUP_NAME" from "COFFEES" x2, "SUPPLIERS" x3 where x2."COF_SUP" = x3."SUP_ID"
    109 
    110   val q7 = for {
    111     c <- coffees
    112     s <- suppliers.filter(c.supID === _.id)
    113   } yield(c.id,c.name,s.name)
    114   q7.result.statements.head
    115   //res7: String = select x2."COF_ID", x2."COF_NAME", x3."SUP_NAME" from "COFFEES" x2, "SUPPLIERS" x3 where x2."COF_SUP" = x3."SUP_ID"
    116 
    117   coffees.map(_.price).max.result.statements.head
    118   //res10: String = select max("COF_PRICE") from "COFFEES"
    119   coffees.map(_.total).sum.result.statements.head
    120   //res11: String = select sum("COF_TOTAL") from "COFFEES"
    121   coffees.length.result.statements.head
    122   //res12: String = select count(1) from "COFFEES"
    123   coffees.filter(_.price > 100.0).exists.result.statements.head
    124   //res13: String = select exists(select "COF_TOTAL", "COF_NAME", "COF_SUP", "COF_ID", "COF_PRICE", "COF_GRADE" from "COFFEES" where "COF_PRICE" > 100.0)
    125   val qInsert = coffees += Coffee(Some(0),"American",101,56.0,Grade.Bestbuy,0)
    126   qInsert.statements.head
    127   //res14: String = insert into "COFFEES" ("COF_NAME","COF_SUP","COF_PRICE","COF_GRADE","COF_TOTAL")  values (?,?,?,?,?)
    128   val qInsert2 = coffees.map{r => (r.name, r.supID, r.price)} += ("Columbia",101,102.0)
    129   qInsert2.statements.head
    130   //res15: String = insert into "COFFEES" ("COF_NAME","COF_SUP","COF_PRICE")  values (?,?,?)
    131   val qInsert3 = (suppliers.map{r => (r.id,r.name)}).
    132     returning(suppliers.map(_.id)) += (101,"The Coffee Co.,")
    133   qInsert3.statements.head
    134   //res16: String = insert into "SUPPLIERS" ("SUP_NAME")  values (?)
    135 
    136   val qDelete = coffees.filter(_.price === 0.0).delete
    137   qDelete.statements.head
    138   //res17: String = delete from "COFFEES" where "COFFEES"."COF_PRICE" = 0.0
    139   val qUpdate = for (c <- coffees if (c.name === "American")) yield c.price
    140   qUpdate.update(10.0).statements.head
    141   //res18: String = update "COFFEES" set "COF_PRICE" = ? where "COFFEES"."COF_NAME" = 'American'
    142 
    143   val initSupAction = suppliers.schema.create andThen qInsert3
    144   val createCoffeeAction = coffees.schema.create
    145   val insertCoffeeAction = qInsert zip qInsert2
    146   val initSupAndCoffee = for {
    147     _ <- initSupAction
    148     _ <- createCoffeeAction
    149     (i1,i2) <- insertCoffeeAction
    150   } yield (i1,i2)
    151 
    152   //先选出所有ESPRESSO开头的coffee名称,然后逐个删除
    153   val delESAction = (for {
    154     ns <- coffees.filter(_.name.startsWith("ESPRESSO")).map(_.name).result
    155     _ <- DBIO.seq(ns.map(n => coffees.filter(_.name === n).delete): _*)
    156   } yield ()).transactionally
    157   //delESAction: slick.dbio.DBIOAction[Unit,slick.dbio.NoStream,slick.dbio.Effect.Read with slick.dbio.Effect.Write with slick.dbio.Effect.Transactional] = CleanUpAction(AndThenAction(Vector(slick.driver.JdbcActionComponent$StartTransaction$@6e76c850, FlatMapAction(slick.driver.JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$1@2005bce5,<function1>,scala.concurrent.impl.ExecutionContextImpl@245036ad))),<function1>,true,slick.dbio.DBIOAction$sameThreadExecutionContext$@294c4c1d)
    158 
    159   //对一个品种价格升10%
    160   def raisePriceAction(i: Long, np: Double, pc: Double) =
    161     (for(c <- coffees if (c.id === i)) yield c.price).update(np * pc)
    162   //raisePriceAction: raisePriceAction[](val i: Long,val np: Double,val pc: Double) => slick.driver.H2Driver.DriverAction[Int,slick.dbio.NoStream,slick.dbio.Effect.Write]
    163   //对所有价格<100的coffee加价
    164   val updatePriceAction = (for {
    165     ips <- coffees.filter(_.price < 100.0).map(r => (r.id, r.price)).result
    166     _ <- DBIO.seq{ips.map { ip => raisePriceAction(ip._1, ip._2, 110.0)}: _* }
    167   } yield()).transactionally
    168   //updatePriceAction: slick.dbio.DBIOAction[Unit,slick.dbio.NoStream,slick.dbio.Effect.Read with slick.dbio.Effect.Write with slick.dbio.Effect.Transactional] = CleanUpAction(AndThenAction(Vector(slick.driver.JdbcActionComponent$StartTransaction$@6e76c850, FlatMapAction(slick.driver.JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$1@49c8a41f,<function1>,scala.concurrent.impl.ExecutionContextImpl@245036ad))),<function1>,true,slick.dbio.DBIOAction$sameThreadExecutionContext$@294c4c1d)
    169 
    170   DBIO.successful(Supplier(Some(102),"Coffee Company","",None))
    171   //res19: slick.dbio.DBIOAction[Supplier,slick.dbio.NoStream,slick.dbio.Effect] = SuccessAction(Supplier(Some(102),Coffee Company,,None))
    172 
    173   DBIO.failed(new Exception("oh my god..."))
    174   //res20: slick.dbio.DBIOAction[Nothing,slick.dbio.NoStream,slick.dbio.Effect] = FailureAction(java.lang.Exception: oh my god...)
    175 
    176   //示范事后处理机制,不必理会功能的具体目的
    177   qInsert.andFinally(qDelete)
    178   //res21: slick.dbio.DBIOAction[Int,slick.dbio.NoStream,slick.dbio.Effect.Write with slick.dbio.Effect.Write] = slick.dbio.SynchronousDatabaseAction$$anon$6@1d46b337
    179 
    180   updatePriceAction.cleanUp (
    181     { case Some(e) => initSupAction; DBIO.failed(new Exception("oh my..."))
    182       case _ => qInsert3
    183     }
    184       ,true
    185   )
    186   //res22: slick.dbio.DBIOAction[Unit,slick.dbio.NoStream,slick.dbio.Effect.Read with slick.dbio.Effect.Write with slick.dbio.Effect.Transactional with slick.dbio.Effect.Write] = CleanUpAction(CleanUpAction(AndThenAction(Vector(slick.driver.JdbcActionComponent$StartTransaction$@6e76c850, FlatMapAction(slick.driver.JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$1@1f7aad00,<function1>,scala.concurrent.impl.ExecutionContextImpl@245036ad))),<function1>,true,slick.dbio.DBIOAction$sameThreadExecutionContext$@294c4c1d),<function1>,true,scala.concurrent.impl.ExecutionContextImpl@245036ad)
    187 
    188   raisePriceAction(101,10.0,110.0).asTry
    189   //res23: slick.dbio.DBIOAction[scala.util.Try[Int],slick.dbio.NoStream,slick.dbio.Effect.Write] = slick.dbio.SynchronousDatabaseAction$$anon$9@60304a44
    190 
    191 
    192   import slick.jdbc.meta.MTable
    193   import scala.concurrent.ExecutionContext.Implicits.global
    194   import scala.concurrent.duration.Duration
    195   import scala.concurrent.{Await, Future}
    196   import scala.util.{Success,Failure}
    197 
    198   val db = Database.forURL("jdbc:h2:mem:test1;DB_CLOSE_DELAY=-1", driver="org.h2.Driver")
    199 
    200   def recreateCoffeeTable: Future[Unit] = {
    201     db.run(MTable.getTables("Coffees")).flatMap {
    202       case tables if tables.isEmpty => db.run(coffees.schema.create).andThen {
    203         case Success(_) => println("coffee table created")
    204         case Failure(e) => println(s"failed to create! ${e.getMessage}")
    205       }
    206       case _ => db.run((coffees.schema.drop andThen coffees.schema.create)).andThen {
    207         case Success(_) => println("coffee table recreated")
    208         case Failure(e) => println(s"failed to recreate! ${e.getMessage}")
    209       }
    210     }
    211   }
    212 
    213 }

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

  • 相关阅读:
    料理phpMyAdmin2.6以上版本数据乱码结果
    mysql 中字符集的选择
    关于MySQL中的mysqldump饬令的运用
    一些Mysql的优化经验
    MYSQL数据库初学者操作指南1
    MySQL 5.0 新特性教程 存储历程:第三讲
    Windows下MySQL PHP5的设置配备部署与phpBB2论坛的架设
    MySQL 5.0新特征教程 存储历程:第一讲
    MySQL 5.0 新特征教程 存储过程:第二讲
    Linux Apache Mysql PHP典范设置装备摆设1
  • 原文地址:https://www.cnblogs.com/tiger-xc/p/5922560.html
Copyright © 2011-2022 走看看