zoukankan      html  css  js  c++  java
  • 细谈Slick(6)- Projection:ProvenShape,强类型的Query结果类型

      在Slick官方文档中描述:连接后台数据库后,需要通过定义Projection,即def * 来进行具体库表列column的选择和排序。通过Projection我们可以选择库表中部分列、也可以增加一些自定义列computed column。具体来说Projection提供了数据库表列与Scala值的对应。例如def * = (column1,column2)把库表的column1和column2与(Int,String)对应,column1[Int],column2[String]。也可以说是与定义column的类参数进行对应。从Slick源代码中我们可以找到Projection定义:

    abstract class AbstractTable[T](val tableTag: Tag, val schemaName: Option[String], val tableName: String) extends Rep[T] {
      /** The client-side type of the table as defined by its * projection */
      type TableElementType
    ...
      /** The * projection of the table used as default for queries and inserts.
        * Should include all columns as a tuple, HList or custom shape and optionally
        * map them to a custom entity type using the <> operator.
        * The `ProvenShape` return type ensures that
        * there is a `Shape` available for translating between the `Column`-based
        * type in * and the client-side type without `Column` in the table's type
        * parameter. */
      def * : ProvenShape[T]
    ...
    }

    我们看到Projection是个ProvenShape[T]类。再看看ProvenShape是怎么定义的:

    /** A limited version of ShapedValue which can be constructed for every type
      * that has a valid shape. We use it to enforce that a table's * projection
      * has a valid shape. A ProvenShape has itself a Shape so it can be used in
      * place of the value that it wraps for purposes of packing and unpacking. */
    trait ProvenShape[U] {
      def value: Any
      val shape: Shape[_ <: FlatShapeLevel, _, U, _]
      def packedValue[R](implicit ev: Shape[_ <: FlatShapeLevel, _, U, R]): ShapedValue[R, U]
      def toNode = packedValue(shape).toNode
    }
    
    object ProvenShape {
      /** Convert an appropriately shaped value to a ProvenShape */
      implicit def proveShapeOf[T, U](v: T)(implicit sh: Shape[_ <: FlatShapeLevel, T, U, _]): ProvenShape[U] =
        new ProvenShape[U] {
          def value = v
          val shape: Shape[_ <: FlatShapeLevel, _, U, _] = sh.asInstanceOf[Shape[FlatShapeLevel, _, U, _]]
          def packedValue[R](implicit ev: Shape[_ <: FlatShapeLevel, _, U, R]): ShapedValue[R, U] = ShapedValue(sh.pack(value).asInstanceOf[R], sh.packedShape.asInstanceOf[Shape[FlatShapeLevel, R, U, _]])
        }
    
      /** The Shape for a ProvenShape */
      implicit def provenShapeShape[T, P](implicit shape: Shape[_ <: FlatShapeLevel, T, T, P]): Shape[FlatShapeLevel, ProvenShape[T], T, P] = new Shape[FlatShapeLevel, ProvenShape[T], T, P] {
        def pack(value: Mixed): Packed =
          value.shape.pack(value.value.asInstanceOf[value.shape.Mixed]).asInstanceOf[Packed]
        def packedShape: Shape[FlatShapeLevel, Packed, Unpacked, Packed] =
          shape.packedShape.asInstanceOf[Shape[FlatShapeLevel, Packed, Unpacked, Packed]]
        def buildParams(extract: Any => Unpacked): Packed =
          shape.buildParams(extract.asInstanceOf[Any => shape.Unpacked])
        def encodeRef(value: Mixed, path: Node) =
          value.shape.encodeRef(value.value.asInstanceOf[value.shape.Mixed], path)
        def toNode(value: Mixed): Node =
          value.shape.toNode(value.value.asInstanceOf[value.shape.Mixed])
      }
    }

    从implicit def proveShapeOf[T,U](v:T):ProvenShape[U]可以得出对于任何T,如果能提供Shape[_,_,T,U,_]的隐式实例implicit instance的话就能构建出ProvenShape[U]。我们再看看什么是Shape: 

    /** A type class that encodes the unpacking `Mixed => Unpacked` of a
     * `Query[Mixed]` to its result element type `Unpacked` and the packing to a
     * fully packed type `Packed`, i.e. a type where everything which is not a
     * transparent container is wrapped in a `Column[_]`.
     *
     * =Example:=
     * - Mixed: (Column[Int], Column[(Int, String)], (Int, Option[Double]))
     * - Unpacked: (Int, (Int, String), (Int, Option[Double]))
     * - Packed: (Column[Int], Column[(Int, String)], (Column[Int], Column[Option[Double]]))
     * - Linearized: (Int, Int, String, Int, Option[Double])
     */
    abstract class Shape[Level <: ShapeLevel, -Mixed, Unpacked_, Packed_] {...}

    上面的Mixed就是ProvenShape的T,Unpacked就是U。如此看来T代表Query[T]的T,而U就是返回结果类型了。如果我们能提供T的Shape隐式实例就能把U升格成ProvenShape[U]。我们来看看Slick官方文件上的例子:

      import scala.reflect.ClassTag
      // A custom record class
      case class Pair[A, B](a: A, b: B)
    
      // A Shape implementation for Pair
      final class PairShape[Level <: ShapeLevel, M <: Pair[_,_], U <: Pair[_,_] : ClassTag, P <: Pair[_,_]](
                                                                         val shapes: Seq[Shape[_, _, _, _]])
        extends MappedScalaProductShape[Level, Pair[_,_], M, U, P] {
        def buildValue(elems: IndexedSeq[Any]) = Pair(elems(0), elems(1))
        def copy(shapes: Seq[Shape[_ <: ShapeLevel, _, _, _]]) = new PairShape(shapes)
      }
    
      implicit def pairShape[Level <: ShapeLevel, M1, M2, U1, U2, P1, P2](
                    implicit s1: Shape[_ <: Level, M1, U1, P1], s2: Shape[_ <: Level, M2, U2, P2]
                   ) = new PairShape[Level, Pair[M1, M2], Pair[U1, U2], Pair[P1, P2]](Seq(s1, s2))
    
    
      // Use it in a table definition
      class A(tag: Tag) extends Table[Pair[Int, String]](tag, "shape_a") {
        def id = column[Int]("id", O.PrimaryKey)
        def s = column[String]("s")
        def * = Pair(id, s)
      }
      val as = TableQuery[A]

    现在Projection可以写成Pair(id,s)。也就是说因为有了implicit def pairShape[...](...):PairShape所以Pair(id,s)被升格成ProvenShape[Pair]。这样Query的返回类型就是Seq[Pair]了。实际上Slick本身提供了Tuple、Case Class、HList等类型的默认Shape隐式实例,所以我们可以把Projection直接写成 def * = (...) 或 Person(...) 或 Int::String::HNil。下面是Tuple的默认Shape:

    trait TupleShapeImplicits {
      @inline
      implicit final def tuple1Shape[Level <: ShapeLevel, M1, U1, P1](implicit u1: Shape[_ <: Level, M1, U1, P1]): Shape[Level, Tuple1[M1], Tuple1[U1], Tuple1[P1]] =
        new TupleShape[Level, Tuple1[M1], Tuple1[U1], Tuple1[P1]](u1)
      @inline
      implicit final def tuple2Shape[Level <: ShapeLevel, M1,M2, U1,U2, P1,P2](implicit u1: Shape[_ <: Level, M1, U1, P1], u2: Shape[_ <: Level, M2, U2, P2]): Shape[Level, (M1,M2), (U1,U2), (P1,P2)] =
        new TupleShape[Level, (M1,M2), (U1,U2), (P1,P2)](u1,u2)
    ...

    回到主题,下面是一个典型的Slick数据库表读取例子:

     1   class TupleTypedPerson(tag: Tag) extends Table[(
     2      Option[Int],String,Int,Option[String])](tag,"PERSON") {
     3     def id = column[Int]("id",O.PrimaryKey,O.AutoInc)
     4     def name = column[String]("name")
     5     def age = column[Int]("age")
     6     def alias = column[Option[String]]("alias")
     7     def * = (id.?,name,age,alias)
     8   }
     9   val tupleTypedPerson = TableQuery[TupleTypedPerson]
    10 
    11   val db = Database.forURL("jdbc:h2:mem:test1;DB_CLOSE_DELAY=-1", driver = "org.h2.Driver")
    12   val createSchemaAction = tupleTypedPerson.schema.create
    13   Await.ready(db.run(createSchemaAction),Duration.Inf)
    14   val initDataAction = DBIO.seq {
    15     tupleTypedPerson ++= Seq(
    16       (Some(0),"Tiger Chan", 45, Some("Tiger_XC")),
    17       (Some(0),"Johnny Cox", 17, None),
    18       (Some(0),"Cathy Williams", 18, Some("Catty")),
    19       (Some(0),"David Wong", 43, None)
    20     )
    21   }
    22   Await.ready(db.run(initDataAction),Duration.Inf)
    23   val queryAction = tupleTypedPerson.result
    24 
    25   Await.result(db.run(queryAction),Duration.Inf).foreach {row =>
    26     println(s"${row._1.get} ${row._2} ${row._4.getOrElse("")}, ${row._3}")
    27   }

    在这个例子的表结构定义里默认的Projection是个Tuple。造成的后果是返回的结果行不含字段名,只有字段位置。使用这样的行数据很容易错误对应,或者重复确认正确的列值会影响工作效率。如果返回的结果类型是Seq[Person]这样的话:Person是个带属性的对象如case class,那么我们就可以通过IDE提示的字段名称来选择字段了。上面提过返回结果类型可以通过ProvenShape来确定,如果能实现ProvenShape[A] => ProvenShape[B]这样的转换处理,那么我们就可以把返回结果行类型从Tuple变成有字段名的类型了:

     1   class Person(val id: Option[Int], 
     2                val name: String, val age: Int, val alias: Option[String])
     3   def toPerson(t: (Option[Int],String,Int,Option[String])) = new Person (
     4     t._1,t._2,t._3,t._4
     5   )
     6   def fromPerson(p: Person) = Some((p.id,p.name,p.age,p.alias))
     7   class TupleMappedPerson(tag: Tag) extends Table[
     8     Person](tag,"PERSON") {
     9     def id = column[Int]("id",O.PrimaryKey,O.AutoInc)
    10     def name = column[String]("name")
    11     def age = column[Int]("age")
    12     def alias = column[Option[String]]("alias")
    13     def * = (id.?,name,age,alias) <> (toPerson,fromPerson)
    14   }
    15   val tupleMappedPerson = TableQuery[TupleMappedPerson]
    16   
    17   Await.result(db.run(tupleMappedPerson.result),Duration.Inf).foreach {row =>
    18     println(s"${row.id.get} ${row.name} ${row.alias.getOrElse("")}, ${row.age}")
    19   }

    我们用<>函数进行了Tuple=>Person转换。注意toPerson和fromPerson这两个相互转换函数。如果Person是个case class,那么Person.tupled和Person.unapply就是它自备的转换函数,我们可以用case class来构建MappedProjection:

     1   case class Person(id: Option[Int]=None, name: String, age: Int, alias: Option[String])
     2 
     3   class MappedTypePerson(tag: Tag) extends Table[Person](tag,"PERSON") {
     4     def id = column[Int]("id",O.PrimaryKey,O.AutoInc)
     5     def name = column[String]("name")
     6     def age = column[Int]("age")
     7     def alias = column[Option[String]]("alias")
     8     def * = (id.?,name,age,alias) <> (Person.tupled,Person.unapply)
     9   }
    10   val mappedPeople = TableQuery[MappedTypePerson]

    从上面两个例子里我们似乎可以得出ProvenShape[T]的T类型就是Table[T]的T,也就是返回结果行的类型了。我们可以用同样方式来进行HList与Person转换: 

     1   def hlistToPerson(hl: Option[Int]::String::Int::(Option[String])::HNil) =
     2     new Person(hl(0),hl(1),hl(2),hl(3))
     3   def personToHList(p: Person) = Some(p.id::p.name::p.age::p.alias::HNil)
     4   class HListPerson(tag: Tag) extends Table[Person](tag,"PERSON") {
     5     def id = column[Int]("id",O.PrimaryKey,O.AutoInc)
     6     def name = column[String]("name")
     7     def age = column[Int]("age")
     8     def alias = column[Option[String]]("alias")
     9     def * = (id.?)::name::age::alias::HNil <> (hlistToPerson,personToHList)
    10   }
    11   val hlistPerson = TableQuery[HListPerson]
    12   Await.result(db.run(hlistPerson.result),Duration.Inf).foreach {row =>
    13     println(s"${row.id.get} ${row.name} ${row.alias.getOrElse("")}, ${row.age}")
    14   }

    同样,必须首先实现hlistToPerson和personToHList转换函数。现在Table的类型参数必须是Person。上面的Projection都是对Table默认Projection的示范。实际上我们可以针对每个Query来自定义Projection,如下:

    1  case class YR(name: String, yr: Int)
    2 
    3   val qYear = for {
    4     p <- hlistPerson
    5   } yield ((p.name, p.age) <> (YR.tupled,YR.unapply))
    6 
    7   Await.result(db.run(qYear.result),Duration.Inf).foreach {row =>
    8     println(s"${row.name} ${row.yr}")
    9   }

    上面这个例子里我们构建了基于case class YR的projection。在join table query情况下只能通过这种方式来构建Projection,看看下面这个例子:

     1   case class Title(id: Int, title: String)
     2   class PersonTitle(tag: Tag) extends Table[Title](tag,"TITLE") {
     3     def id = column[Int]("id")
     4     def title = column[String]("title")
     5     def * = (id,title) <> (Title.tupled,Title.unapply)
     6   }
     7   val personTitle = TableQuery[PersonTitle]
     8   val createTitleAction = personTitle.schema.create
     9    Await.ready(db.run(createTitleAction),Duration.Inf)
    10    val initTitleData = DBIO.seq {
    11      personTitle ++= Seq(
    12        Title(1,"Manager"),
    13        Title(2,"Programmer"),
    14        Title(3,"Clerk")
    15      )
    16    }
    17    Await.ready(db.run(initTitleData),Duration.Inf)
    18  
    19   case class Titles(id: Int, name: String, title: String)
    20   val qPersonWithTitle = for {
    21     p <- hlistPerson
    22     t <- personTitle if p.id === t.id
    23   } yield ((p.id,p.name,t.title) <> (Titles.tupled,Titles.unapply))
    24   Await.result(db.run(qPersonWithTitle.result),Duration.Inf).foreach {row =>
    25     println(s"${row.id} ${row.name}, ${row.title}")
    26   }

    现在对任何形式的Query结果我们都能使用强类型(strong typed)的字段名称来进行操作了。

    下面是本次示范的源代码:

      1 import slick.collection.heterogeneous.{ HList, HCons, HNil }
      2 import slick.collection.heterogeneous.syntax._
      3 import slick.driver.H2Driver.api._
      4 
      5 import scala.concurrent.ExecutionContext.Implicits.global
      6 import scala.concurrent.duration._
      7 import scala.concurrent.{Await, Future}
      8 
      9 
     10 object chkProjection {
     11   
     12   class TupleTypedPerson(tag: Tag) extends Table[(
     13      Option[Int],String,Int,Option[String])](tag,"PERSON") {
     14     def id = column[Int]("id",O.PrimaryKey,O.AutoInc)
     15     def name = column[String]("name")
     16     def age = column[Int]("age")
     17     def alias = column[Option[String]]("alias")
     18     def * = (id.?,name,age,alias)
     19   }
     20   val tupleTypedPerson = TableQuery[TupleTypedPerson]
     21 
     22   val db = Database.forURL("jdbc:h2:mem:test1;DB_CLOSE_DELAY=-1", driver = "org.h2.Driver")
     23   val createSchemaAction = tupleTypedPerson.schema.create
     24   Await.ready(db.run(createSchemaAction),Duration.Inf)
     25   val initDataAction = DBIO.seq {
     26     tupleTypedPerson ++= Seq(
     27       (Some(0),"Tiger Chan", 45, Some("Tiger_XC")),
     28       (Some(0),"Johnny Cox", 17, None),
     29       (Some(0),"Cathy Williams", 18, Some("Catty")),
     30       (Some(0),"David Wong", 43, None)
     31     )
     32   }
     33   Await.ready(db.run(initDataAction),Duration.Inf)
     34 
     35   val queryAction = tupleTypedPerson.result
     36 
     37   Await.result(db.run(queryAction),Duration.Inf).foreach {row =>
     38     println(s"${row._1.get} ${row._2} ${row._4.getOrElse("")}, ${row._3}")
     39   }
     40 
     41   class Person(val id: Option[Int],
     42                val name: String, val age: Int, val alias: Option[String])
     43   def toPerson(t: (Option[Int],String,Int,Option[String])) = new Person (
     44     t._1,t._2,t._3,t._4
     45   )
     46   def fromPerson(p: Person) = Some((p.id,p.name,p.age,p.alias))
     47   class TupleMappedPerson(tag: Tag) extends Table[
     48     Person](tag,"PERSON") {
     49     def id = column[Int]("id",O.PrimaryKey,O.AutoInc)
     50     def name = column[String]("name")
     51     def age = column[Int]("age")
     52     def alias = column[Option[String]]("alias")
     53     def * = (id.?,name,age,alias) <> (toPerson,fromPerson)
     54   }
     55   val tupleMappedPerson = TableQuery[TupleMappedPerson]
     56 
     57   Await.result(db.run(tupleMappedPerson.result),Duration.Inf).foreach {row =>
     58     println(s"${row.id.get} ${row.name} ${row.alias.getOrElse("")}, ${row.age}")
     59   }
     60 
     61   def hlistToPerson(hl: Option[Int]::String::Int::(Option[String])::HNil) =
     62     new Person(hl(0),hl(1),hl(2),hl(3))
     63   def personToHList(p: Person) = Some(p.id::p.name::p.age::p.alias::HNil)
     64   class HListPerson(tag: Tag) extends Table[Person](tag,"PERSON") {
     65     def id = column[Int]("id",O.PrimaryKey,O.AutoInc)
     66     def name = column[String]("name")
     67     def age = column[Int]("age")
     68     def alias = column[Option[String]]("alias")
     69     def * = (id.?)::name::age::alias::HNil <> (hlistToPerson,personToHList)
     70   }
     71   val hlistPerson = TableQuery[HListPerson]
     72   Await.result(db.run(hlistPerson.result),Duration.Inf).foreach {row =>
     73     println(s"${row.id.get} ${row.name} ${row.alias.getOrElse("")}, ${row.age}")
     74   }
     75 
     76   case class YR(name: String, yr: Int)
     77 
     78   val qYear = for {
     79     p <- hlistPerson
     80   } yield ((p.name, p.age) <> (YR.tupled,YR.unapply))
     81 
     82   Await.result(db.run(qYear.result),Duration.Inf).foreach {row =>
     83     println(s"${row.name} ${row.yr}")
     84   }
     85 
     86   case class Title(id: Int, title: String)
     87   class PersonTitle(tag: Tag) extends Table[Title](tag,"TITLE") {
     88     def id = column[Int]("id")
     89     def title = column[String]("title")
     90     def * = (id,title) <> (Title.tupled,Title.unapply)
     91   }
     92   val personTitle = TableQuery[PersonTitle]
     93   val createTitleAction = personTitle.schema.create
     94    Await.ready(db.run(createTitleAction),Duration.Inf)
     95    val initTitleData = DBIO.seq {
     96      personTitle ++= Seq(
     97        Title(1,"Manager"),
     98        Title(2,"Programmer"),
     99        Title(3,"Clerk")
    100      )
    101    }
    102    Await.ready(db.run(initTitleData),Duration.Inf)
    103 
    104   case class Titles(id: Int, name: String, title: String)
    105   val qPersonWithTitle = for {
    106     p <- hlistPerson
    107     t <- personTitle if p.id === t.id
    108   } yield ((p.id,p.name,t.title) <> (Titles.tupled,Titles.unapply))
    109   Await.result(db.run(qPersonWithTitle.result),Duration.Inf).foreach {row =>
    110     println(s"${row.id} ${row.name}, ${row.title}")
    111   }
    112   
    113 
    114 }

     

     

     

     

     

     

     

  • 相关阅读:
    ZZ
    Qt5获取网卡/IP等信息
    platforms
    [转]如何使用VS 2013發布一個可以在Windows XP中獨立運行的可執行文件
    spring cloud 服务提供者
    spring cloud: eureka搭建
    通过maven 上传jar 到nexus3,cong nexus3下载jar
    搭建turbine时 hystrix MaxConcurrentConnections reached 异常
    Zuul超时问题,微服务响应超时,zuul进行熔断
    微信公众号开发网址
  • 原文地址:https://www.cnblogs.com/tiger-xc/p/6178065.html
Copyright © 2011-2022 走看看