zoukankan      html  css  js  c++  java
  • Akka(27): Stream:Use case-Connecting Slick-dbStream & Scalaz-stream-fs2

       在以前的博文中我们介绍了Slick,它是一种FRM(Functional Relation Mapper)。有别于ORM,FRM的特点是函数式的语法可以支持灵活的对象组合(Query Composition)实现大规模的代码重复利用,但同时这些特点又影响了编程人员群体对FRM的接受程度,阻碍了FRM成为广为流行的一种数据库编程方式。所以我们只能从小众心态来探讨如何改善Slick现状,希望通过与某些Stream库集成,在Slick FRM的基础上恢复一些人们熟悉的Recordset数据库光标(cursor)操作方式,希望如此可以降低FRM数据库编程对函数式编程水平要求,能够吸引更多的编程人员接受FRM。刚好,在这篇讨论里我们希望能介绍一些Akka-Stream和外部系统集成对接的实际用例,把Slick数据库数据载入连接到Akka-Stream形成streaming-dataset应该是一个挺好的想法。Slick和Akka-Stream可以说是自然匹配的一对,它们都是同一个公司产品,都支持Reactive-Specification。Reactive系统的集成对象之间是通过公共界面Publisher来实现对接的。Slick提供了个Dababase.stream函数可以构建这个Publisher:

     /** Create a `Publisher` for Reactive Streams which, when subscribed to, will run the specified
          * `DBIOAction` and return the result directly as a stream without buffering everything first.
          * This method is only supported for streaming actions.
          *
          * The Publisher itself is just a stub that holds a reference to the action and this Database.
          * The action does not actually start to run until the call to `onSubscribe` returns, after
          * which the Subscriber is responsible for reading the full response or cancelling the
          * Subscription. The created Publisher can be reused to serve a multiple Subscribers,
          * each time triggering a new execution of the action.
          *
          * For the purpose of combinators such as `cleanup` which can run after a stream has been
          * produced, cancellation of a stream by the Subscriber is not considered an error. For
          * example, there is no way for the Subscriber to cause a rollback when streaming the
          * results of `someQuery.result.transactionally`.
          *
          * When using a JDBC back-end, all `onNext` calls are done synchronously and the ResultSet row
          * is not advanced before `onNext` returns. This allows the Subscriber to access LOB pointers
          * from within `onNext`. If streaming is interrupted due to back-pressure signaling, the next
          * row will be prefetched (in order to buffer the next result page from the server when a page
          * boundary has been reached). */
        final def stream[T](a: DBIOAction[_, Streaming[T], Nothing]): DatabasePublisher[T] = streamInternal(a, false)

    这个DatabasePublisher[T]就是一个Publisher[T]:

    /** A Reactive Streams `Publisher` for database Actions. */
    abstract class DatabasePublisher[T] extends Publisher[T] { self =>
    ...
    }

    然后Akka-Stream可以通过Source.fromPublisher(publisher)构建Akka Source构件:

      /**
       * Helper to create [[Source]] from `Publisher`.
       *
       * Construct a transformation starting with given publisher. The transformation steps
       * are executed by a series of [[org.reactivestreams.Processor]] instances
       * that mediate the flow of elements downstream and the propagation of
       * back-pressure upstream.
       */
      def fromPublisher[T](publisher: Publisher[T]): Source[T, NotUsed] =
        fromGraph(new PublisherSource(publisher, DefaultAttributes.publisherSource, shape("PublisherSource")))

    理论上Source.fromPublisher(db.stream(query))就可以构建一个Reactive-Stream-Source了。下面我们就建了例子来做示范:首先是Slick的铺垫代码boiler-code:

      val aqmraw = Models.AQMRawQuery
      val db = Database.forConfig("h2db")
      // aqmQuery.result returns Seq[(String,String,String,String)]
      val aqmQuery = aqmraw.map {r => (r.year,r.state,r.county,r.value)}
      // type alias
      type RowType = (String,String,String,String)
      // user designed strong typed resultset type. must extend FDAROW
      case class TypedRow(year: String, state: String, county: String, value: String) extends FDAROW
      // strong typed resultset conversion function. declared implicit to remind during compilation
      implicit def toTypedRow(row: RowType): TypedRow =
        TypedRow(row._1,row._2,row._3,row._4)

    我们需要的其实就是aqmQuery,用它来构建DatabasePublisher:

      // construct DatabasePublisher from db.stream
      val dbPublisher: DatabasePublisher[RowType] = db.stream[RowType](aqmQuery.result)
      // construct akka source
      val source: Source[RowType,NotUsed] = Source.fromPublisher[RowType](dbPublisher)

    有了dbPublisher就可以用Source.fromPublisher函数构建source了。现在我们试着运算这个Akka-Stream:

      implicit val actorSys = ActorSystem("actor-system")
      implicit val ec = actorSys.dispatcher
      implicit val mat = ActorMaterializer()
    
      source.take(6).map{row => toTypedRow(row)}.runWith(
        Sink.foreach(qmr => {
          println(s"州名: ${qmr.state}")
          println(s"县名:${qmr.county}")
          println(s"年份:${qmr.year}")
          println(s"取值:${qmr.value}")
          println("-------------")
        }))
    
      scala.io.StdIn.readLine()
      actorSys.terminate()

    下面是运算结果:

    州名: Alabama
    县名:Elmore
    年份:1999
    取值:5
    -------------
    州名: Alabama
    县名:Jefferson
    年份:1999
    取值:39
    -------------
    州名: Alabama
    县名:Lawrence
    年份:1999
    取值:28
    -------------
    州名: Alabama
    县名:Madison
    年份:1999
    取值:31
    -------------
    州名: Alabama
    县名:Mobile
    年份:1999
    取值:32
    -------------
    州名: Alabama
    县名:Montgomery
    年份:1999
    取值:15
    -------------

    显示我们已经成功的连接了Slick和Akka-Stream。

    现在我们有了Reactive stream source,它是个akka-stream,该如何对接处于下游的scalaz-stream-fs2呢?我们知道:akka-stream是Reactive stream,而scalaz-stream-fs2是纯“拖式”pull-model stream,也就是说上面这个Reactive stream source必须被动等待下游的scalaz-stream-fs2来读取数据。按照Reactive-Stream规范,下游必须通过backpressure信号来知会上游是否可以发送数据状态,也就是说我们需要scalaz-stream-fs2来产生backpressure。scalaz-stream-fs2 async包里有个Queue结构:

    /**
     * Asynchronous queue interface. Operations are all nonblocking in their
     * implementations, but may be 'semantically' blocking. For instance,
     * a queue may have a bound on its size, in which case enqueuing may
     * block until there is an offsetting dequeue.
     */
    trait Queue[F[_], A] { self =>
      /**
       * Enqueues one element in this `Queue`.
       * If the queue is `full` this waits until queue is empty.
       *
       * This completes after `a`  has been successfully enqueued to this `Queue`
       */
      def enqueue1(a: A): F[Unit]
    
      /**
       * Enqueues each element of the input stream to this `Queue` by
       * calling `enqueue1` on each element.
       */
      def enqueue: Sink[F, A] = _.evalMap(enqueue1)
      /** Dequeues one `A` from this queue. Completes once one is ready. */
      def dequeue1: F[A]
      /** Repeatedly calls `dequeue1` forever. */
      def dequeue: Stream[F, A] = Stream.bracket(cancellableDequeue1)(d => Stream.eval(d._1), d => d._2).repeat
    ...
    }

    这个结构支持多线程操作,也就是说enqueue和dequeue可以在不同的线程里操作。值得关注的是:enqueue会block,只有在完成了dequeue后才能继续。这个dequeue就变成了抵消backpressure的有效方法了。具体操作方法是:上游在一个线程里用enqueue发送一个数据元素,然后等待下游完成在另一个线程里的dequeue操作,完成这个循环后再进行下一个元素的enqueue。enqueue代表akka-stream向scalaz-stream-fs2发送数据,可以用akka-stream的Sink构件来实现:

     class FS2Gate[T](q: fs2.async.mutable.Queue[Task,Option[T]]) extends GraphStage[SinkShape[T]] {
      val in = Inlet[T]("inport")
      val shape = SinkShape.of(in)
    
      override def createLogic(inheritedAttributes: Attributes): GraphStageLogic =
        new GraphStageLogic(shape) with InHandler {
          override def preStart(): Unit = {
            pull(in)          //initiate stream elements movement
            super.preStart()
          }
    
          override def onPush(): Unit = {
            q.enqueue1(Some(grab(in))).unsafeRun()
            pull(in)
          }
    
          override def onUpstreamFinish(): Unit = {
            q.enqueue1(None).unsafeRun()
            println("the end of stream !")
            completeStage()
          }
    
          override def onUpstreamFailure(ex: Throwable): Unit = {
            q.enqueue1(None).unsafeRun()
            completeStage()
          }
    
          setHandler(in,this)
    
        }
    }

    以上这个akka-stream GraphStage描述了对上游每一个元素的enqueue动作。我们可以用scalaz-stream-fs2的flatMap来序列化运算两个线程里的enqueue和dequeue: 

       val fs2Stream: Stream[Task,RowType] = Stream.eval(async.boundedQueue[Task,Option[RowType]](16))
         .flatMap { q =>
           Task(source.to(new FS2Gate[RowType](q)).run).unsafeRunAsyncFuture  //enqueue Task(new thread)
           pipe.unNoneTerminate(q.dequeue)      //dequeue in current thread
         }

    这个函数返回fs2.Stream[Task,RowType],是一种运算方案,我们必须run来实际运算:

      fs2Stream.map{row => toTypedRow(row)}
          .map(qmr => {
          println(s"州名: ${qmr.state}")
          println(s"县名:${qmr.county}")
          println(s"年份:${qmr.year}")
          println(s"取值:${qmr.value}")
          println("-------------")
        }).run.unsafeRun

    通过测试运行,我们成功的为scalaz-stream-fs2实现了data streaming。

    下面是本次示范的源代码:

    import slick.jdbc.H2Profile.api._
    import com.bayakala.funda._
    import api._
    
    import scala.language.implicitConversions
    import scala.concurrent.duration._
    import akka.actor._
    import akka.stream._
    import akka.stream.scaladsl._
    import akka.stream.stage._
    import slick.basic.DatabasePublisher
    import akka._
    import fs2._
    import akka.stream.stage.{GraphStage, GraphStageLogic}
    
    
     class FS2Gate[T](q: fs2.async.mutable.Queue[Task,Option[T]]) extends GraphStage[SinkShape[T]] {
      val in = Inlet[T]("inport")
      val shape = SinkShape.of(in)
    
      override def createLogic(inheritedAttributes: Attributes): GraphStageLogic =
        new GraphStageLogic(shape) with InHandler {
          override def preStart(): Unit = {
            pull(in)          //initiate stream elements movement
            super.preStart()
          }
    
          override def onPush(): Unit = {
            q.enqueue1(Some(grab(in))).unsafeRun()
            pull(in)
          }
    
          override def onUpstreamFinish(): Unit = {
            q.enqueue1(None).unsafeRun()
            println("end of stream !!!!!!!")
            completeStage()
          }
    
          override def onUpstreamFailure(ex: Throwable): Unit = {
            q.enqueue1(None).unsafeRun()
            completeStage()
          }
    
          setHandler(in,this)
    
        }
    }
    
    object AkkaStreamSource extends App {
    
      val aqmraw = Models.AQMRawQuery
      val db = Database.forConfig("h2db")
      // aqmQuery.result returns Seq[(String,String,String,String)]
      val aqmQuery = aqmraw.map {r => (r.year,r.state,r.county,r.value)}
      // type alias
      type RowType = (String,String,String,String)
      // user designed strong typed resultset type. must extend FDAROW
      case class TypedRow(year: String, state: String, county: String, value: String) extends FDAROW
      // strong typed resultset conversion function. declared implicit to remind during compilation
      implicit def toTypedRow(row: RowType): TypedRow =
        TypedRow(row._1,row._2,row._3,row._4)
      // construct DatabasePublisher from db.stream
      val dbPublisher: DatabasePublisher[RowType] = db.stream[RowType](aqmQuery.result)
      // construct akka source
      val source: Source[RowType,NotUsed] = Source.fromPublisher[RowType](dbPublisher)
    
      implicit val actorSys = ActorSystem("actor-system")
      implicit val ec = actorSys.dispatcher
      implicit val mat = ActorMaterializer()
    
      /*
      source.take(10).map{row => toTypedRow(row)}.runWith(
        Sink.foreach(qmr => {
          println(s"州名: ${qmr.state}")
          println(s"县名:${qmr.county}")
          println(s"年份:${qmr.year}")
          println(s"取值:${qmr.value}")
          println("-------------")
        })) */
    
       val fs2Stream: Stream[Task,RowType] = Stream.eval(async.boundedQueue[Task,Option[RowType]](16))
         .flatMap { q =>
           Task(source.to(new FS2Gate[RowType](q)).run).unsafeRunAsyncFuture  //enqueue Task(new thread)
           pipe.unNoneTerminate(q.dequeue)      //dequeue in current thread
         }
    
      fs2Stream.map{row => toTypedRow(row)}
          .map(qmr => {
          println(s"州名: ${qmr.state}")
          println(s"县名:${qmr.county}")
          println(s"年份:${qmr.year}")
          println(s"取值:${qmr.value}")
          println("-------------")
        }).run.unsafeRun
    
      scala.io.StdIn.readLine()
      actorSys.terminate()
    
    }

     

     

     

     

     

     

     

     

  • 相关阅读:
    第9.11节 Python中IO模块文件打开读写操作实例
    第9.10节 Python中IO模块其他文件操作属性和方法简介
    Python使用import导入模块时执行了模块的文件但报ModuleNotFoundError错误的愚蠢问题
    Python使用import导入模块时报ValueError: source code string cannot contain null bytes的解决方案
    第9.9节 Python文件随机读写定位操作方法seek
    第9.8节 Python使用writelines函数写入文件内容
    第9.7节 Python使用write函数写入文件内容
    Python中import模块时报SyntaxError: (unicode error)utf-8 codec can not decode 错误的解决办法
    The 2nd tip of DB Query Analyzer
    水仙花数优化问题:穷举法、查找表法、组合数学法
  • 原文地址:https://www.cnblogs.com/tiger-xc/p/7599908.html
Copyright © 2011-2022 走看看