zoukankan      html  css  js  c++  java
  • POJ1284 Primitive Roots【原根】

    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 4361   Accepted: 2568

    Description

    We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7. 
    Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p. 

    Input

    Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.

    Output

    For each p, print a single number that gives the number of primitive roots in a single line.

    Sample Input

    23
    31
    79
    

    Sample Output

    10
    8
    24
    

    Source


    问题链接POJ1284 Primitive Roots

    问题简述参见上文。

    问题分析:这个问题的题目是原根,是求奇素数的原根的个数,筛选打表实现。

    程序说明:(略)

    题记:(略)


    参考链接:(略)


    AC的C++语言程序如下:

    /* POJ1284 Primitive Roots */
    
    #include <iostream>
    #include <stdio.h>
    
    using namespace std;
    
    const int N = 65536;
    
    int euler[N+1];
    
    void phi()
    {
        for(int i=1; i<=N; i++)
            euler[i] = i;
        for(int i=2; i<=N; i+=2)
            euler[i] /= 2;
        for(int i=3; i<=N; i++) {
            if(euler[i] == i) { // 素数,用该素数筛
                for(int j=i; j<=N; j+=i)
                    euler[j] = euler[j] / i * (i - 1);
            }
        }
    }
    
    int main()
    {
        // 欧拉函数打表
        phi();
    
        int p;
        while(scanf("%d", &p) != EOF)
            printf("%d
    ", euler[p - 1]);
    
        return 0;
    }




  • 相关阅读:
    作业5

    Linux系统管理4
    作业
    递归训练1:在两个长度相等的排序数组中找到上中位数
    LeetCode:面试题 08.05. 递归乘法
    LeetCode:面试题 08.06. 汉诺塔问题
    LeetCode:22. 括号生成
    如何仅用递归函数和栈操作逆序一个栈
    LeetCode:面试题 03.02. 栈的最小值
  • 原文地址:https://www.cnblogs.com/tigerisland/p/7563566.html
Copyright © 2011-2022 走看看