Scaena Felix
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1041 Accepted Submission(s): 450
Problem Description
Given a parentheses sequence consist of '(' and ')', a modify can filp a parentheses, changing '(' to ')' or ')' to '('.
If we want every not empty <b>substring</b> of this parentheses sequence not to be "paren-matching", how many times at least to modify this parentheses sequence?
For example, "()","(())","()()" are "paren-matching" strings, but "((", ")(", "((()" are not.
Input
If we want every not empty <b>substring</b> of this parentheses sequence not to be "paren-matching", how many times at least to modify this parentheses sequence?
For example, "()","(())","()()" are "paren-matching" strings, but "((", ")(", "((()" are not.
The first line of the input is a integer T ,
meaning that there are T test
cases.
Every test cases contains a parentheses sequenceS only
consists of '(' and ')'.
1≤|S|≤1,000 .
Output
Every test cases contains a parentheses sequence
For every test case output the least number of modification.
Sample Input
3 () (((( (())
1 0 2
问题链接:HDU5479 Scaena Felix
问题简述:参见上文。
问题分析:
这类匹配问题看似堆栈问题,是需要堆栈的概念的,即遇到左括号则进栈遇到右括号与栈中的括号匹配一下。
然而,实际上没有必要用堆栈,计数一下就好了。
程序说明:按字符流读入数据进行处理是最佳选择,使用缓存那是浮云。
题记:(略)
参考链接:(略)
AC的C语言程序如下:
/* HDU5479 Scaena Felix */ #include <stdio.h> int main(void) { int t; char c; scanf("%d", &t); getchar(); while(t--) { int left = 0, ans = 0; while((c = getchar()) != ' ') { if(c == '(') left++; else if(c == ')') { if(left > 0) { left--; ans++; } } } printf("%d ", ans); } return 0; }