zoukankan      html  css  js  c++  java
  • Project Euler Problem 14 Longest Collatz sequence

    Longest Collatz sequence

    Problem 14

    The following iterative sequence is defined for the set of positive integers:

    nn/2 (n is even)
    n → 3n + 1 (n is odd)

    Using the rule above and starting with 13, we generate the following sequence:

    13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

    It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.

    Which starting number, under one million, produces the longest chain?

    NOTE: Once the chain starts the terms are allowed to go above one million.


    C++:

    #include <iostream>
    #include <cstring>
    
    using namespace std;
    
    const int MAXN = 1000000;
    const int ONE_HUNDRED_MILLION = 100000000;
    
    int cs[ONE_HUNDRED_MILLION+1];
    
    // Collatz sequence count
    int cscount(long long x)
    {
        if(x <= ONE_HUNDRED_MILLION && cs[x])
            return cs[x];
    
        int count;
        if(x % 2 == 0)
            count = 1 + cscount(x / 2);
        else
            count =  1 + cscount(x * 3 + 1);
    
        if(x <= ONE_HUNDRED_MILLION)
            cs[x] = count;
    
        return count;
    }
    
    int main()
    {
        memset(cs, 0, sizeof(cs));
        cs[1] = 1;
    
        int n, ans;
        while(cin >> n && n <= MAXN) {
            ans = 1;
            for(int i=1; i<=n; i++) {
                cs[i] = cscount(i);
                if(cs[i] > cs[ans])
                    ans = i;
            }
            cout << ans << endl;
        }
    
        return 0;
    }

    Input data:

    999999



    C++(Too slow):

    #include <iostream>
    
    using namespace std;
    
    //#define DEBUG
    
    const int MAXN = 1000000;
    
    // Collatz sequence count
    int cscount(int start)
    {
    #ifdef DEBUG
            cout << start << ": ";
    #endif
    
        int count = 0;
        for(;;) {
    #ifdef DEBUG
            cout << start << " ";
    #endif
    
            count++;
            if(start == 1)
                break;
            if(start & 1)
                start = 3 * start + 1;
            else
                start >>= 1;
        }
    
    #ifdef DEBUG
        cout << endl;
    #endif
    
        return count;
    }
    
    int main()
    {
        int n, ans, maxcount=0, temp;
        while(cin >> n && n <= MAXN) {
            for(int i=1; i<=n; i++) {
                temp = cscount(i);
                if(temp > maxcount) {
                    maxcount = temp;
                    ans = i;
                }
            }
            cout << ans << endl;
        }
    
        return 0;
    }




  • 相关阅读:
    07-图5 Saving James Bond
    07-图4 哈利·波特的考试(25 分)多源最短路,邻接矩阵
    最短路径问题
    最小生成树
    06-图3 六度空间(30 分)
    06-图2 Saving James Bond
    06-图1 列出连通集(25 分)邻接矩阵

    05-树9 Huffman Codes(30 分)
    集合及运算
  • 原文地址:https://www.cnblogs.com/tigerisland/p/7564020.html
Copyright © 2011-2022 走看看