zoukankan      html  css  js  c++  java
  • Kruskal算法的C语言程序

    Kruskal算法是有关图的最小生成树的算法。Kruskal算法是两个经典的最小生成树算法之一,另外一个是Prim算法

    程序来源:Kruskal's Algorithm

    百度百科:Kruskal算法

    维基百科:Kruskal's Algorithm

    C语言程序(去除了原文中非标准的C语言代码):

    #include<stdio.h>
    #include<stdlib.h>
    int i,j,k,a,b,u,v,n,ne=1;
    int min,mincost=0,cost[9][9],parent[9];
    int find(int);
    int uni(int,int);
    
    int main()
    {
        printf("
    	Implementation of Kruskal's algorithm
    ");
        printf("
    Enter the no. of vertices:");
        scanf("%d",&n);
        printf("
    Enter the cost adjacency matrix:
    ");
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                scanf("%d",&cost[i][j]);
                if(cost[i][j]==0)
                    cost[i][j]=999;
            }
        }
        printf("The edges of Minimum Cost Spanning Tree are
    ");
        while(ne < n)
        {
            for(i=1,min=999;i<=n;i++)
            {
                for(j=1;j <= n;j++)
                {
                    if(cost[i][j] < min)
                    {
                        min=cost[i][j];
                        a=u=i;
                        b=v=j;
                    }
                }
            }
            u=find(u);
            v=find(v);
            if(uni(u,v))
            {
                printf("%d edge (%d,%d) =%d
    ",ne++,a,b,min);
                mincost +=min;
            }
            cost[a][b]=cost[b][a]=999;
        }
        printf("
    	Minimum cost = %d
    ",mincost);
    }
    
    int find(int i)
    {
        while(parent[i])
        i=parent[i];
        return i;
    }
    
    int uni(int i,int j)
    {
        if(i!=j)
        {
            parent[j]=i;
            return 1;
        }
        return 0;
    }

    运行结果:

    	Implementation of Kruskal's algorithm
    
    Enter the no. of vertices:6
    
    Enter the cost adjacency matrix:
    0 3 1 6 0 0
    3 0 5 0 3 0
    1 5 0 5 6 4
    6 0 5 0 0 2
    0 3 6 0 0 6
    0 0 4 2 6 0
    The edges of Minimum Cost Spanning Tree are
    1 edge (1,3) =1
    2 edge (4,6) =2
    3 edge (1,2) =3
    4 edge (2,5) =3
    5 edge (3,6) =4
    
    	Minimum cost = 13


  • 相关阅读:
    Block编程
    自己写Web服务器(续)
    C# 2.0对现有语法的改进
    使用CDN
    优化网站设计(一):减少请求数
    MongoDB Shell的使用
    memcache 和appfabric
    go语言中几个有趣的特性以及对go的看法
    bpm流程平台
    Socket编程 (异步通讯) (Tcp,Udp)Part2
  • 原文地址:https://www.cnblogs.com/tigerisland/p/7564174.html
Copyright © 2011-2022 走看看