基于二进制计算最大公约数的算法。
程序来自维基百科。
#include <stdio.h> // Recursive version in C unsigned int gcd(unsigned int u, unsigned int v) { // simple cases (termination) if (u == v) return u; if (u == 0) return v; if (v == 0) return u; // look for factors of 2 if (~u & 1) // u is even { if (v & 1) // v is odd return gcd(u >> 1, v); else // both u and v are even return gcd(u >> 1, v >> 1) << 1; } if (~v & 1) // u is odd, v is even return gcd(u, v >> 1); // reduce larger argument if (u > v) return gcd((u - v) >> 1, v); return gcd((v - u) >> 1, u); } // Iterative version in C unsigned int gcd2(unsigned int u, unsigned int v) { int shift; /* GCD(0,v) == v; GCD(u,0) == u, GCD(0,0) == 0 */ if (u == 0) return v; if (v == 0) return u; /* Let shift := lg K, where K is the greatest power of 2 dividing both u and v. */ for (shift = 0; ((u | v) & 1) == 0; ++shift) { u >>= 1; v >>= 1; } while ((u & 1) == 0) u >>= 1; /* From here on, u is always odd. */ do { /* remove all factors of 2 in v -- they are not common */ /* note: v is not zero, so while will terminate */ while ((v & 1) == 0) /* Loop X */ v >>= 1; /* Now u and v are both odd. Swap if necessary so u <= v, then set v = v - u (which is even). For bignums, the swapping is just pointer movement, and the subtraction can be done in-place. */ if (u > v) { unsigned int t = v; v = u; u = t;} // Swap u and v. v = v - u; // Here v >= u. } while (v != 0); /* restore common factors of 2 */ return u << shift; } int main(void) { unsigned m = 140, n = 42; printf("gcd1: %u %u result=%u ", m, n, gcd(m, n)); printf("gcd2: %u %u result=%u ", m, n, gcd2(m, n)); return 0; }