1、深度可分离卷积
Depthwise Separable Convolution
(一)结构
实质上是将标准卷积分成了两步:depthwise卷积和pointwise卷积。
标准卷积:
depthwise卷积:
pointwise卷积:
2、代码实现
[32, 3, 224, 224] ——> [32, 64, 112, 112]
1 import torch 2 import torch.nn as nn 3 import torch.nn.functional as F 4 5 class Block(nn.Module): 6 "Depthwise conv + Pointwise conv" 7 def __init__(self, in_channels, out_channels, stride=1): 8 super(Block, self).__init__() 9 self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=1, groups=in_channels, bias=False) 10 self.bn1 = nn.BatchNorm2d(in_channels) 11 self.conv2 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False) 12 self.bn2 = nn.BatchNorm2d(out_channels) 13 14 def forward(self, x): 15 x = self.conv1(x) 16 x = self.bn1(x) 17 x = F.relu(x) 18 x = self.conv2(x) 19 x = self.bn2(x) 20 x = F.relu(x) 21 return x 22 23 input = torch.randn(32, 3, 224, 224) 24 block = Block(3, 64) 25 out = block(input) 26 print(out.size())