转载:比特币源码分析(二十二) - 挖矿和共识
https://blog.csdn.net/yzpbright/article/details/81231351
CalculateNextWorkRequired()方法:
unsigned int CalculateNextWorkRequired(const CBlockIndex* pindexLast, int64_t nFirstBlockTime, const Consensus::Params& params) { if (params.fPowNoRetargeting) return pindexLast->nBits; // Limit adjustment step // 计算生成最近的2016个区块实际花费了多少时间 int64_t nActualTimespan = pindexLast->GetBlockTime() - nFirstBlockTime; //这里需要限制调整的步长,即把实际花费的时间限制在0.5周和8周之间 if (nActualTimespan < params.nPowTargetTimespan/4)//params.nPowTargetTimespan是2周,即20160分钟 nActualTimespan = params.nPowTargetTimespan/4; if (nActualTimespan > params.nPowTargetTimespan*4) nActualTimespan = params.nPowTargetTimespan*4; // Retarget const arith_uint256 bnPowLimit = UintToArith256(params.powLimit); arith_uint256 bnNew; bnNew.SetCompact(pindexLast->nBits);//旧的难度目标值 bnNew *= nActualTimespan; bnNew /= params.nPowTargetTimespan; if (bnNew > bnPowLimit) bnNew = bnPowLimit; return bnNew.GetCompact(); }
计算公式:新的难度目标值 = 旧的难度目标值 * 生成最近2016个区块所花费的实际时间 / 系统期望生成2016个区块的时间
其中代码中:nBits 即 旧的难度目标值,nActualTimespa 即 生成最近2016个区块所花费的实际时间 ,
params.nPowTargetTimespan 即 系统期望生成2016个区块的时间 。
2.1.3.3难度目标的表示
上面讲了难度目标的计算方法,这里再进一步讲一下难度目标的表示方法,难度目标值用nBits表示,nBits是一个无符号的32位整数,定义在src/chain.h的CBlockIndex类中:
uint32_t nBits;
这个无符号整数的最高位的1个字节代表指数(exponent),低位的3个字节代表系数(coefficient),这个记法将工作量证明的target表示为系数/指数(coefficient/exponent)的格式。
计算难度目标target的公式为:target = coefficient * 2^(8 * (exponent – 3))
例如在区块277,316中,nBits的值为 0x1903a30c,在这个区块里,0x19为指数,而 0x03a30c为系数,计算难度值:
target = 0x03a30c * 2^(0x08 * (0x19 - 0x03))
=> target = 0x03a30c * 2^(0x08 * 0x16)
=> target = 0x03a30c * 2^0xB0
按十进制计算为:
=> target = 238,348 * 2^176
=> target = 22,829,202,948,393,929,850,749,706,076,701,368,331,072,452,018,388,575,715,328
转化回十六进制后为:
=> target = 0x0000000000000003A30C00000000000000000000000000000000000000000000
上述过程就是由无符号的32位整数nBits转为难度值的详细步骤。
由无符号的32位整数nBits转为难度值的函数
(如:0x1903a30c 转为 0x0000000000000003A30C00000000000000000000000000000000000000000000 ):
// This implementation directly uses shifts instead of going
// through an intermediate MPI representation.
arith_uint256& arith_uint256::SetCompact(uint32_t nCompact, bool* pfNegative, bool* pfOverflow)
{
int nSize = nCompact >> 24;
uint32_t nWord = nCompact & 0x007fffff;
if (nSize <= 3) {
nWord >>= 8 * (3 - nSize);
*this = nWord;
} else {
*this = nWord;
*this <<= 8 * (nSize - 3);
}
if (pfNegative)
*pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
if (pfOverflow)
*pfOverflow = nWord != 0 && ((nSize > 34) ||
(nWord > 0xff && nSize > 33) ||
(nWord > 0xffff && nSize > 32));
return *this;
}
由难度值转为无符号的32位整数nBits的函数
(如:0x0000000000000003A30C00000000000000000000000000000000000000000000 转为 0x1903a30c ):
uint32_t arith_uint256::GetCompact(bool fNegative) const
{
int nSize = (bits() + 7) / 8;
uint32_t nCompact = 0;
if (nSize <= 3) {
nCompact = GetLow64() << 8 * (3 - nSize);
} else {
arith_uint256 bn = *this >> 8 * (nSize - 3);
nCompact = bn.GetLow64();
}
// The 0x00800000 bit denotes the sign.
// Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
if (nCompact & 0x00800000) {
nCompact >>= 8;
nSize++;
}
assert((nCompact & ~0x007fffff) == 0);
assert(nSize < 256);
nCompact |= nSize << 24;
nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
return nCompact;
}
这两个方法定义在src/arith_uint256.h的 arith_uint256类中。