zoukankan      html  css  js  c++  java
  • 计算机视觉代码合集

     

     

    这些代码很实用,可以让我们站在巨人的肩膀上~~

    Topic

    Resources

    References

    Feature Extraction

    ·         SIFT [1] [Demo program][SIFT Library] [VLFeat]

    ·         PCA-SIFT [2] [Project]

    ·         Affine-SIFT [3] [Project]

    ·         SURF [4] [OpenSURF] [Matlab Wrapper]

    ·         Affine Covariant Features [5] [Oxford project]

    ·         MSER [6] [Oxford project] [VLFeat]

    ·         Geometric Blur [7] [Code]

    ·         Local Self-Similarity Descriptor [8] [Oxford implementation]

    ·         Global and Efficient Self-Similarity [9] [Code]

    ·         Histogram of Oriented Graidents [10] [INRIA Object Localization Toolkit] [OLT toolkit for Windows]

    ·         GIST [11] [Project]

    ·         Shape Context [12] [Project]

    ·         Color Descriptor [13] [Project]

    ·         Pyramids of Histograms of Oriented Gradients [Code]

    ·         Space-Time Interest Points (STIP) [14] [Code]

    ·         Boundary Preserving Dense Local Regions [15][Project]

    1.    D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004. [PDF]

    2.    Y. Ke and R. Sukthankar, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,CVPR, 2004. [PDF]

    3.    J.M. Morel and G.Yu, ASIFT, A new framework for fully affine invariant image comparisonSIAM Journal on Imaging Sciences, 2009. [PDF]

    4.    H. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features,ECCV, 2006. [PDF]

    5.    K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool, A comparison of affine region detectorsIJCV, 2005. [PDF]

    6.    J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regionsBMVC, 2002. [PDF]

    7.    A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. CVPR, 2005. [PDF]

    8.    E. Shechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007. [PDF]

    9.    T. Deselaers and V. Ferrari. Global and Efficient Self-Similarity for Object Classification and DetectionCVPR 2010. [PDF]

    10.  N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human DetectionCVPR 2005. [PDF]

    11.  A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelopeIJCV, 2001. [PDF]

    12.  S. Belongie, J. Malik and J. Puzicha. Shape matching and object recognition using shape contextsPAMI, 2002. [PDF]

    13.  K. E. A. van de Sande, T. Gevers and Cees G. M. Snoek, Evaluating Color Descriptors for Object and Scene RecognitionPAMI, 2010.

    14.  I. Laptev, On Space-Time Interest Points, IJCV, 2005. [PDF]

    15.  J. Kim and K. Grauman, Boundary Preserving Dense Local RegionsCVPR 2011. [PDF]

    Image Segmentation

    ·         Normalized Cut [1] [Matlab code]

    ·         Gerg Mori' Superpixel code [2] [Matlab code]

    ·         Efficient Graph-based Image Segmentation [3] [C++ code] [Matlab wrapper]

    ·         Mean-Shift Image Segmentation [4] [EDISON C++ code] [Matlab wrapper]

    ·         OWT-UCM Hierarchical Segmentation [5] [Resources]

    ·         Turbepixels [6] [Matlab code 32bit] [Matlab code 64bit] [Updated code]

    ·         Quick-Shift [7] [VLFeat]

    ·         SLIC Superpixels [8] [Project]

    ·         Segmentation by Minimum Code Length [9] [Project]

    ·         Biased Normalized Cut [10] [Project]

    ·         Segmentation Tree [11-12] [Project]

    ·         Entropy Rate Superpixel Segmentation [13] [Code]

    1.    J. Shi and J Malik, Normalized Cuts and Image SegmentationPAMI, 2000 [PDF]

    2.    X. Ren and J. Malik. Learning a classification model for segmentation.ICCV, 2003. [PDF]

    3.    P. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image SegmentationIJCV 2004. [PDF]

    4.    D. Comaniciu, P Meer. Mean Shift: A Robust Approach Toward Feature Space AnalysisPAMI 2002. [PDF]

    5.    P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour Detection and Hierarchical Image SegmentationPAMI, 2011. [PDF]

    6.    A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi, TurboPixels: Fast Superpixels Using Geometric FlowsPAMI 2009. [PDF]

    7.    A. Vedaldi and S. Soatto, Quick Shift and Kernel Methodsfor Mode Seeking,ECCV, 2008. [PDF]

    8.    R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, SLIC Superpixels, EPFL Technical Report, 2010. [PDF]

    9.    A. Y. Yang, J. Wright, S. Shankar Sastry, Y. Ma , Unsupervised Segmentation of Natural Images via Lossy Data CompressionCVIU, 2007. [PDF]

    10.  S. Maji, N. Vishnoi and J. Malik, Biased Normalized CutCVPR 2011

    11.  E. Akbas and N. Ahuja, “From ramp discontinuities to segmentation tree,”  ACCV 2009. [PDF]

    12.  N. Ahuja, “A Transform for Multiscale Image Segmentation by Integrated Edge and Region Detection,” PAMI 1996 [PDF]

    13.  M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, Entropy Rate Superpixel Segmentation, CVPR 2011 [PDF]

    Object Detection

    ·         A simple object detector with boosting [Project]

    ·         INRIA Object Detection and Localization Toolkit [1] [Project]

    ·         Discriminatively Trained Deformable Part Models [2] [Project]

    ·         Cascade Object Detection with Deformable Part Models [3] [Project]

    ·         Poselet [4] [Project]

    ·         Implicit Shape Model [5] [Project]

    ·         Viola and Jones's Face Detection [6] [Project]

    1.    N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human DetectionCVPR 2005. [PDF]

    2.    P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan.
    Object Detection with Discriminatively Trained Part Based ModelsPAMI, 2010 [PDF]

    3.    P. Felzenszwalb, R. Girshick, D. McAllester. Cascade Object Detection with Deformable Part ModelsCVPR 2010 [PDF]

    4.    L. Bourdev, J. Malik, Poselets: Body Part Detectors Trained Using 3D Human Pose AnnotationsICCV 2009 [PDF]

    5.    B. Leibe, A. Leonardis, B. Schiele. Robust Object Detection with Interleaved Categorization and SegmentationIJCV, 2008. [PDF]

    6.    P. Viola and M. Jones, Rapid Object Detection Using a Boosted Cascade of Simple FeaturesCVPR 2001. [PDF]

    Saliency Detection

    ·         Itti, Koch, and Niebur' saliency detection [1] [Matlab code]

    ·         Frequency-tuned salient region detection [2] [Project]

    ·         Saliency detection using maximum symmetric surround [3] [Project]

    ·         Attention via Information Maximization [4] [Matlab code]

    ·         Context-aware saliency detection [5] [Matlab code]

    ·         Graph-based visual saliency [6] [Matlab code]

    ·         Saliency detection: A spectral residual approach. [7] [Matlab code]

    ·         Segmenting salient objects from images and videos. [8] [Matlab code]

    ·         Saliency Using Natural statistics. [9] [Matlab code]

    ·         Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]

    ·         Learning to Predict Where Humans Look [11] [Project]

    ·         Global Contrast based Salient Region Detection [12] [Project]

    1.    L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysisPAMI, 1998. [PDF]

    2.    R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In CVPR, 2009. [PDF]

    3.    R. Achanta and S. Susstrunk. Saliency detection using maximum symmetric surround. In ICIP, 2010. [PDF]

    4.    N. Bruce and J. Tsotsos. Saliency based on information maximization. InNIPS, 2005. [PDF]

    5.    S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, 2010. [PDF]

    6.    J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. NIPS, 2007. [PDF]

    7.    X. Hou and L. Zhang. Saliency detection: A spectral residual approach.CVPR, 2007. [PDF]

    8.    E. Rahtu, J. Kannala, M. Salo, and J. Heikkila. Segmenting salient objects from images and videosCVPR, 2010. [PDF]

    9.    L. Zhang, M. Tong, T. Marks, H. Shan, and G. Cottrell. Sun: A bayesian framework for saliency using natural statisticsJournal of Vision, 2008. [PDF]

    10.  D. Gao and N. Vasconcelos, Discriminant Saliency for Visual Recognition from Cluttered ScenesNIPS, 2004. [PDF]

    11.  T. Judd and K. Ehinger and F. Durand and A. Torralba, Learning to Predict Where Humans LookICCV, 2009. [PDF]

    12.  M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, S.-M. Hu. Global Contrast based Salient Region DetectionCVPR 2011.

    Image Classification

    ·         Pyramid Match [1] [Project]

    ·         Spatial Pyramid Matching [2] [Code]

    ·         Locality-constrained Linear Coding [3] [Project] [Matlab code]

    ·         Sparse Coding [4] [Project] [Matlab code]

    ·         Texture Classification [5] [Project]

    ·         Multiple Kernels for Image Classification [6] [Project]

    ·         Feature Combination [7] [Project]

    ·         SuperParsing [Code]

    1.    K. Grauman and T. Darrell, The Pyramid Match Kernel: Discriminative Classification with Sets of Image FeaturesICCV 2005. [PDF]

    2.    S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene CategoriesCVPR 2006[PDF]

    3.    J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained Linear Coding for Image ClassificationCVPR, 2010 [PDF]

    4.    J. Yang, K. Yu, Y. Gong, T. Huang, Linear Spatial Pyramid Matching using Sparse Coding for Image ClassificationCVPR, 2009 [PDF]

    5.    M. Varma and A. Zisserman, A statistical approach to texture classification from single images, IJCV2005. [PDF]

    6.    A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, Multiple Kernels for Object DetectionICCV, 2009. [PDF]

    7.    P. Gehler and S. Nowozin, On Feature Combination for Multiclass Object Detection, ICCV, 2009. [PDF]

    8.    J. Tighe and S. Lazebnik, SuperParsing: Scalable Nonparametric Image
    Parsing with Superpixels, ECCV 2010. [PDF]

     

     

     

     

     

    Topic

    Resources

    References

    Category-Independent Object Proposal

    ·         Objectness measure [1] [Code]

    ·         Parametric min-cut [2] [Project]

    ·         Object proposal [3] [Project]

    1.    B. Alexe, T. Deselaers, V. Ferrari, What is an Object?CVPR 2010 [PDF]

    2.    J. Carreira and C. Sminchisescu. Constrained Parametric Min-Cuts for Automatic Object SegmentationCVPR 2010. [PDF]

    3.    I. Endres and D. Hoiem. Category Independent Object Proposals, ECCV 2010. [PDF]

    MRF

    ·         Graph Cut [Project] [C++/Matlab Wrapper Code]

    1.    Y. Boykov, O. Veksler and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001 [PDF]

    Shadow Detection

    ·         Shadow Detection using Paired Region [Project]

    ·         Ground shadow detection [Project]

    1.    R. Guo, Q. Dai and D. Hoiem, Single-Image Shadow Detection and Removal using Paired Regions, CVPR 2011 [PDF]

    2.    J.-F. Lalonde, A. A. Efros, S. G. Narasimhan, Detecting Ground Shadowsin Outdoor Consumer PhotographsECCV 2010 [PDF]

    Optical Flow

    ·         Kanade-Lucas-Tomasi Feature Tracker [C Code]

    ·         Optical Flow Matlab/C++ code by Ce Liu [Project]

    ·         Horn and Schunck's method by Deqing Sun [Code]

    ·         Black and Anandan's method by Deqing Sun [Code]

    ·         Optical flow code by Deqing Sun [Matlab Code] [Project]

    ·         Large Displacement Optical Flow by Thomas Brox [Executable for 64-bit Linux] [ Matlab Mex-functions for 64-bit Linux and 32-bit Windows] [Project]

    ·         Variational Optical Flow by Thomas Brox [Executable for 64-bit Linux] [ Executable for 32-bit Windows ] [ Matlab Mex-functions for 64-bit Linux and 32-bit Windows ] [Project]

    1.    B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo VisionIJCAI 1981. [PDF]

    2.    J. Shi, C. Tomasi, Good Feature to TrackCVPR 1994. [PDF]

    3.    C. Liu. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. Doctoral ThesisMIT 2009. [PDF]

    4.    B.K.P. Horn and B.G. Schunck, Determining Optical FlowArtificial Intelligence 1981. [PDF]

    5.    M. J. Black and P. Anandan, A framework for the robust estimation of optical flow, ICCV 93. [PDF]

    6.    D. Sun, S. Roth, and M. J. Black, Secrets of optical flow estimation and their principlesCVPR 2010. [PDF]

    7.    T. Brox, J. Malik, Large displacement optical flow: descriptor matching in variational motion estimationPAMI, 2010 [PDF]

    8.    T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warpingECCV 2004 [PDF]

    Object Tracking

    ·         Particle filter object tracking [1] [Project]

    ·         KLT Tracker [2-3] [Project]

    ·         MILTrack [4] [Code]

    ·         Incremental Learning for Robust Visual Tracking [5] [Project]

    ·         Online Boosting Trackers [6-7] [Project]

    ·         L1 Tracking [8] [Matlab code]

    1.    P. Perez, C. Hue, J. Vermaak, and M. Gangnet. Color-Based Probabilistic Tracking ECCV, 2002. [PDF]

    2.    B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo VisionIJCAI 1981. [PDF]

    3.    J. Shi, C. Tomasi, Good Feature to TrackCVPR 1994. [PDF]

    4.    B. Babenko, M. H. Yang, S. Belongie, Robust Object Tracking with Online Multiple Instance LearningPAMI 2011 [PDF]

    5.    D. Ross, J. Lim, R.-S. Lin, M.-H. Yang, Incremental Learning for Robust Visual TrackingIJCV 2007 [PDF]

    6.    H. Grabner, and H. Bischof, On-line Boosting and Vision, CVPR 2006 [PDF]

    7.    H. Grabner, C. Leistner, and H. Bischof, Semi-supervised On-line Boosting for Robust TrackingECCV 2008 [PDF]

    8.    X. Mei and H. Ling, Robust Visual Tracking using L1 Minimization, ICCV, 2009. [PDF]

    Image Matting

    ·         Closed Form Matting [Code]

    ·         Spectral Matting [Project]

    ·         Learning-based Matting [Code]

    1.    A. Levin D. Lischinski and Y. WeissA Closed Form Solution to Natural Image MattingPAMI 2008 [PDF]

    2.    A. Levin, A. Rav-Acha, D. Lischinski. Spectral MattingPAMI 2008. [PDF]

    3.    Y. Zheng and C. Kambhamettu, Learning Based Digital MattingICCV 2009 [PDF]

    Bilateral Filtering

    ·         Fast Bilateral Filter [Project]

    ·         Real-time O(1) Bilateral Filtering [Code]

    ·         SVM for Edge-Preserving Filtering [Code]

    1.    Q. Yang, K.-H. Tan and N. Ahuja,  Real-time O(1) Bilateral Filtering
    CVPR 2009. [PDF]

    2.    Q. Yang, S. Wang, and N. Ahuja, SVM for Edge-Preserving Filtering
    CVPR 2010. [PDF]

    Image Denoising

    ·         K-SVD [Matlab code]

    ·         BLS-GSM [Project]

    ·         BM3D [Project]

    ·         FoE [Code]

    ·         GFoE [Code]

    ·         Non-local means [Code]

    ·         Kernel regression [Code]

     

    Image Super-Resolution

    ·         MRF for image super-resolution [Project]

    ·         Multi-frame image super-resolution [Project]

    ·         UCSC Super-resolution [Project]

    ·         Sprarse coding super-resolution [Code]

     

    Image Deblurring

    ·         Eficient Marginal Likelihood Optimization in Blind Deconvolution [Code]

    ·         Analyzing spatially varying blur [Project]

    ·         Radon Transform [Code]

     

    Image Quality Assessment

    ·         FSIM [1] [Project]

    ·         Degradation Model [2] [Project]

    ·         SSIM [3] [Project]

    ·         SPIQA [Code]

    1.    L. Zhang, L. Zhang, X. Mou and D. Zhang, FSIM: A Feature Similarity Index for Image Quality AssessmentTIP 2011. [PDF]

    2.    N. Damera-Venkata, and T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik,Image Quality Assessment Based on a Degradation ModelTIP 2000. [PDF]

    3.    Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, TIP 2004. [PDF]

    4.    B. Ghanem, E. Resendiz, and N. Ahuja, Segmentation-Based Perceptual Image Quality Assessment (SPIQA)ICIP 2008. [PDF]

    Density Estimation

    ·         Kernel Density Estimation Toolbox [Project]

     

    Dimension Reduction

    ·         Dimensionality Reduction Toolbox [Project]

    ·         ISOMAP [Code]

    ·         LLE [Project]

    ·         Laplacian Eigenmaps [Code]

    ·         Diffusion maps [Code]

     

    Sparse Coding

     

     

    Low-Rank Matrix Completion

     

     

    Nearest Neighbors matching

    ·         ANN: Approximate Nearest Neighbor Searching [Project] [Matlab wrapper]

    ·         FLANN: Fast Library for Approximate Nearest Neighbors [Project]

     

    Steoreo

    ·         StereoMatcher [Project]

    1.    D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithmsIJCV 2002 [PDF]

    Structure from motion

    ·         Boundler [1] [Project]

     

    1.    N. Snavely, S. M. Seitz, R. Szeliski. Photo Tourism: Exploring image collections in 3DSIGGRAPH, 2006. [PDF]

    Distance Transformation

    ·         Distance Transforms of Sampled Functions [1] [Project]

    1.    P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sampled functionsTechnical report, Cornell University, 2004. [PDF]

    Chamfer Matching

    ·         Fast Directional Chamfer Matching [Code]

    1.    M.-Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa, Fast Directional Chamfer MatchingCVPR 2010 [PDF]

    Clustering

    ·         K-Means [VLFeat] [Oxford code]

    ·         Spectral Clustering [UW Project][Code] [Self-Tuning code]

    ·         Affinity Propagation [Project]

     

    Classification

    ·         SVM [Libsvm] [SVM-Light] [SVM-Struct]

    ·         Boosting

    ·         Naive Bayes

     

    Regression

    ·         SVM

    ·         RVM

    ·         GPR

     

     

    Topic

    Resources

    References

    Multiple Kernel Learning (MKL)

             SHOGUN [Project]

             OpenKernel.org [Project]

             DOGMA (online algorithms) [Project]

             SimpleMKL [Project]

    1.    S. Sonnenburg, G. R?tsch, C. Sch?fer, B. Sch?lkopf . Large scale multiple kernel learningJMLR, 2006. [PDF]

    2.    F. Orabona and L. Jie. Ultra-fast optimization algorithm for sparse multi kernel learning. ICML, 2011. [PDF]

    3.    F. Orabona, L. Jie, and B. Caputo. Online-batch strongly convex multi kernel learningCVPR, 2010. [PDF]

    4.    A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimplemklJMRL, 2008. [PDF]

    Multiple Instance Learning (MIL)

             MIForests [1] [Project]

             MILIS [2]

             MILES [3] [Project] [Code]

             DD-SVM [4] [Project]

    1.    C. Leistner, A. Saffari, and H. Bischof, MIForests: Multiple-Instance Learning with Randomized TreesECCV 2010. [PDF]

    2.    Z. Fu, A. Robles-Kelly, and J. Zhou, MILIS: Multiple instance learning with instance selectionPAMI 2010. [PDF]

    3.    Y. Chen, J. Bi and J. Z. Wang, MILES: Multiple-Instance Learning via Embedded Instance SelectionPAMI 2006 [PDF]

    4.    Yixin Chen and James Z. Wang, Image Categorization by Learning and Reasoning with RegionsJMLR 2004. [PDF]

    Other Utilities

             Code for downloading Flickr images, by James Hays [Code]

             The Lightspeed Matlab Toolbox by Tom Minka [Code]

             MATLAB Functions for Multiple View Geometry [Code]

             Peter's Functions for Computer Vision [Code]

             Statistical Pattern Recognition Toolbox [Code]

     

    Useful Links (dataset, lectures, and other softwares)

    Conference Information

             Computer Image Analysis, Computer Vision Conferences

    Papers

             Computer vision paper on the web

             NIPS Proceedings

    Datasets

             Compiled list of recognition datasets

             Computer vision dataset from CMU

    Lectures

             Videolectures

    Source Codes

             Computer Vision Algorithm Implementations

             OpenCV

             Source Code Collection for Reproducible Research

     

     

     

     

     

     

     

     

     

     

  • 相关阅读:
    Android简易注解View(java反射实现)
    android注解[Jake Wharton Butter Knife]
    Android渠道汇总
    SVN管理规范
    马上着手开发iOS应用程序一 todolist
    MVC记录
    OC中intValue要注意的地方
    将从数组中取到的字符串赋值给了UIImage导致的错误
    一个null引发的错误
    记录一些容易忘记的属性 -- UITabBarController
  • 原文地址:https://www.cnblogs.com/timssd/p/5155178.html
Copyright © 2011-2022 走看看