zoukankan      html  css  js  c++  java
  • 数据归一化和两种常用的归一化方法

    数据处理之标准化/归一化方法

    归一化方法(Normalization Method)

    1.把数变为(0,1)之间的小数

          主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。

    2.把有量纲表达式变为无量纲表达式

          归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。

          比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。

          另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。

    常见的归一化公式

    1.线性函数转换

          表达式如下:

          y=(x-MinValue)/(MaxValue-MinValue)

         说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。

    2.对数函数转换

          表达式如下:

         y=log10(x)

         说明:以10为底的对数函数转换。

    3.反余切函数转换

          表达式如下:

         y=atan(x)*2/PI

    标准化方法(Normalization Method)

          数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。由于信用指标体系的各个指标度量单位是不同的,为了能够将指标参与评价计算,需要对指标进行规范化处理,通过函数变换将其数值映射到某个数值区间。

     

     

    数据归一化和两种常用的归一化方法

          数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是两种常用的归一化方法:

    min-max标准化(Min-Max Normalization)

          也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间。转换函数如下:

           

          其中max为样本数据的最大值,min为样本数据的最小值。这种方法有个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。

    Z-score标准化方法

          这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1,转化函数为:

           

          其中为所有样本数据的均值,为所有样本数据的标准差。

     

     

     

     

  • 相关阅读:
    javascript:void(0)是什么意思 天高地厚
    C#开发 WinForm中窗体显示和窗体传值相关知识
    c#在WinForm中重写ProgressBar控件(带%的显示)
    flash在C#中的应用
    c# winform 关于DataGridView的一些操作
    winform中输入数据的验证
    RadioButton和CheckBox
    Manifest文件的配置
    简单程序用于熟悉Activity生命周期
    Activity的生命周期
  • 原文地址:https://www.cnblogs.com/timssd/p/5844733.html
Copyright © 2011-2022 走看看