在本模块中,我将把几个常用的监控部分给梳理一下。前面我们提到过,在性能监控图谱中,有操作系统、应用服务器、中间件、队列、缓存、数据库、网络、前端、负载均衡、Web服务器、存储、代码等很多需要监控的点。
显然这些监控点不能在一个专栏中全部覆盖并一一细化,我只能找最常用的几个,做些逻辑思路的说明,同时也把具体的实现描述出来。如果你遇到了其他的组件,也需要一一实现这些监控。
在本篇中,主要想说明白下图的这个监控逻辑。
这应该是现在最流行的一套监控逻辑了吧。
我今天把常见的使用Grafana、Prometheus、InfluxDB、Exporters的数据展示方式说一下,如果你刚进入性能测试领域,也能有一个感性的认识。
有测试工具,有监控工具,才能做后续的性能分析和瓶颈定位,所以有必要把这些工具的逻辑跟你摆一摆。
所有做性能的人都应该知道一点,不管数据以什么样的形式展示,最要紧的还是看数据的来源和含义,以便做出正确的判断。
我先说明一下JMeter和node_exporter到Grafana的数据展示逻辑。至于其他的Exporter,我就不再解释这个逻辑了,只说监控分析的部分。
JMeter+InfluxDB+Grafana的数据展示逻辑
一般情况下,我们用JMeter做压力测试时,都是使用JMeter的控制台来查看结果。如下图所示:
或者装个插件来看结果:
或者用JMeter来生成HTML:
这样看都没有问题,我们在前面也强调过,对于压力工具来说,我们最多只关心三条曲线的数据:TPS(T由测试目标定义)、响应时间、错误率。这里的错误率还只是辅助排查问题的曲线,没有问题时,只看TPS和响应时间即可。
不过采取以上三种方式有几个方面的问题。
- 整理结果时比较浪费时间。
- 在GUI用插件看曲线,做高并发时并不现实。
- 在场景运行时间比较长的时候,采用生成HTML的方式,会出现消耗内存过大的情况,而实际上,在生成的结果图中,有很多生成的图我们并不是那么关注。
- 生成的结果保存之后再查看比较麻烦,还要一个个去找。
那么如何解决这几个问题呢?
用JMeter的Backend Listener帮我们实时发送数据到InfluxDB或Graphite可以解决这样的问题。Graphite Backend Listener的支持是在JMeter 2.13版本,InfluxdDB Backend Listener的支持是在JMeter 3.3的版本,它们都是用异步的方式把数据发送出来,以便查看。
其实有这个JMeter发送给InfluxDB的数据之后,我们不需要看上面的那些HTML数据,也可以直观地看到系统性能的性能趋势。并且这样保存下来的数据,在测试结束后想再次查看也比较方便比对。
JMeter+InfluxDB+Grafana的结构如下:
在这个结构中,JMeter发送压力到服务器的同时,统计下TPS、响应时间、线程数、错误率等信息。默认每30秒在控制台输出一次结果(在jmeter.properties中有一个参数#summariser.interval=30可以控制)。配置了Backend Listener之后,将统计出的结果异步发送到InfluxDB中。最后在Grafana中配置InfluxDB数据源和JMeter显示模板。
然后就可以实时查看JMeter的测试结果了,这里看到的数据和控制台的数据是一样。
但如果这么简单就说完了,这篇文章也就没价值了。下面我们来说一下,数据的传输和展示逻辑。
JMeter中Backend Listener的配置
下面我们就InfluxDB的Backend Listener做个说明。它的配置比较简单,在脚本中加上即可。
我们先配置好influxdb Url、application等信息,application这个配置可以看成是场景名。
那么JMeter如何将数据发给InfluxDB呢?请看源码中的关键代码,如下所示:
private void addMetrics(String transaction, SamplerMetric metric) {
// FOR ALL STATUS
addMetric(transaction, metric.getTotal(), metric.getSentBytes(), metric.getReceivedBytes(), TAG_ALL, metric.getAllMean(), metric.getAllMinTime(),
metric.getAllMaxTime(), allPercentiles.values(), metric::getAllPercentile);
// FOR OK STATUS
addMetric(transaction, metric.getSuccesses(), null, null, TAG_OK, metric.getOkMean(), metric.getOkMinTime(),
metric.getOkMaxTime(), okPercentiles.values(), metric::getOkPercentile);
// FOR KO STATUS
addMetric(transaction, metric.getFailures(), null, null, TAG_KO, metric.getKoMean(), metric.getKoMinTime(),
metric.getKoMaxTime(), koPercentiles.values(), metric::getKoPercentile);
metric.getErrors().forEach((error, count) -> addErrorMetric(transaction, error.getResponseCode(),
error.getResponseMessage(), count));
}
从这段代码可以看出,站在全局统计的视角来看,这里把JMeter运行的统计结果,比如事务的Total请求、发送接收字节、平均值、最大值、最小值等,都加到metric中,同时也会把成功和失败的事务信息添加到metric中去。
在源码中,还有更多的添加metric的步骤,你有兴趣的话,也可以看一下JMeter源码中的InfluxdbBackendListenerClient.java
。
保存了metric之后,再使用InfluxdbMetricsSender发送到Influxdb中去。发送关键代码如下:
@Override
public void writeAndSendMetrics() {
........
if (!copyMetrics.isEmpty()) {
try {
if(httpRequest == null) {
httpRequest = createRequest(url);
}
StringBuilder sb = new StringBuilder(copyMetrics.size()*35);
for (MetricTuple metric : copyMetrics) {
// Add TimeStamp in nanosecond from epoch ( default in InfluxDB )
sb.append(metric.measurement)
.append(metric.tag)
.append(" ") //$NON-NLS-1$
.append(metric.field)
.append(" ")
.append(metric.timestamp+"000000")
.append("
"); //$NON-NLS-1$
}
StringEntity entity = new StringEntity(sb.toString(), StandardCharsets.UTF_8);
httpRequest.setEntity(entity);
lastRequest = httpClient.execute(httpRequest, new FutureCallback<HttpResponse>() {
@Override
public void completed(final HttpResponse response) {
int code = response.getStatusLine().getStatusCode();
/*
* HTTP response summary 2xx: If your write request received
* HTTP 204 No Content, it was a success! 4xx: InfluxDB
* could not understand the request. 5xx: The system is
* overloaded or significantly impaired.
*/
if (MetricUtils.isSuccessCode(code)) {
if(log.isDebugEnabled()) {
log.debug("Success, number of metrics written: {}", copyMetrics.size());
}
} else {
log.error("Error writing metrics to influxDB Url: {}, responseCode: {}, responseBody: {}", url, code, getBody(response));
}
}
@Override
public void failed(final Exception ex) {
log.error("failed to send data to influxDB server : {}", ex.getMessage());
}
@Override
public void cancelled() {
log.warn("Request to influxDB server was cancelled");
}
});
........
}
}
}
通过writeAndSendMetrics,就将所有保存的metrics都发给了InfluxDB。
InfluxDB中的存储结构
然后我们再来看下InfluxDB中如何存储:
> show databases
name: databases
name
----
_internal
jmeter
> use jmeter
Using database jmeter
>
> show MEASUREMENTS
name: measurements
name
----
events
jmeter
> select * from events where application='7ddemo'
name: events
time application text title
---- ----------- ---- -----
1575255462806000000 7ddemo Test Cycle1 started ApacheJMeter
1575256463820000000 7ddemo Test Cycle1 ended ApacheJMeter
..............
n> select * from jmeter where application='7ddemo' limit 10
name: jmeter
time application avg count countError endedT hit max maxAT meanAT min minAT pct90.0 pct95.0 pct99.0 rb responseCode responseMessage sb startedT statut transaction
---- ----------- --- ----- ---------- ------ --- --- ----- ------ --- ----- ------- ------- ------- -- ------------ --------------- -- -------- ------ -----------
1575255462821000000 7ddemo 0 0 0 0 0 internal
1575255467818000000 7ddemo 232.82352941176472 17 0 17 849 122 384.9999999999996 849 849 0 0 all all
1575255467824000000 7ddemo 232.82352941176472 17 849 122 384.9999999999996 849 849 0 0 all 0_openIndexPage
1575255467826000000 7ddemo 232.82352941176472 17 849 122 384.9999999999996 849 849 ok 0_openIndexPage
1575255467829000000 7ddemo 0 1 1 1 1 internal
1575255472811000000 7ddemo 205.4418604651163 26 0 26 849 122 252.6 271.4 849 0 0 all all
1575255472812000000 7ddemo 0 1 1 1 1 internal
1575255472812000000 7ddemo 205.4418604651163 26 849 122 252.6 271.4 849 ok 0_openIndexPage
1575255472812000000 7ddemo 205.4418604651163 26 849 122 252.6 271.4 849 0 0 all 0_openIndexPage
1575255477811000000 7ddemo 198.2142857142857 27 0 27 849 117 263.79999999999995 292.3500000000001 849 0 0 all all
这段代码也就是说,在InfluxDB中,创建了两个MEASUREMENTS,分别是events和jmeter。这两个各自存了数据,我们在界面中配置的testtile和eventTags放在了events这个MEASUREMENTS中。在模板中这两个值暂时都是不用的。
在jmeter这个MEASUREMENTS中,我们可以看到application和事务的统计信息,这些值和控制台一致。
在Grafana中显示的时候,就是从这个表中取出的数据,根据时序做的曲线。
Grafana中的配置
有了JMeter发送到InfluxDB中的数据,下面就来配置一下Grafana中的展示。首先,要配置一个InfluxDB数据源。如下所示:
在这里配置好URL、Database、User、Password之后,直接点击保存即可。
然后添加一个JMeter dashboard,我们常用的dashboard是Grafana官方ID为5496的模板。导入进来后,选择好对应的数据源。
然后就看到界面了。
这时还没有数据,我们稍后做个示例,看下JMeter中的数据怎么和这个界面的数据对应起来。
我们先看下图中两个重要的数据查询语句吧。
TPS曲线:
SELECT last("count") / $send_interval FROM "$measurement_name" WHERE ("transaction" =~ /^$transaction$/ AND "statut" = 'ok') AND $timeFilter GROUP BY time($__interval)
上面这个就是Total TPS了,在这里称为throughput。关于这个概念,我在第一篇中就已经有了说明,这里再次提醒,概念的使用在团队中要有统一的认识,不要受行业内一些传统信息的误导。
这里取的数据来自MEASUREMENTS中成功状态的所有事务。
响应时间曲线:
SELECT mean("pct95.0") FROM "$measurement_name" WHERE ("application" =~ /^$application$/) AND $timeFilter GROUP BY "transaction", time($__interval) fill(null)
这里是用95 pct内的响应时间画出来的曲线。
整体展示出来的效果如下:
数据比对
首先,我们在JMeter中配置一个简单的场景。10个线程,每个线程迭代10次,以及两个HTTP请求。
也就是说,这时会产生10x10x2=200次请求。我们用JMeter跑起来看一下。
看到了吧,这个请求数和我们预想的一样。下面我们看一下Grafana中展示出来的结果。
还有针对每个事务的统计情况。
至此,JMeter到Grafana的展示过程就完成了。以后我们就不用再保存JMeter的执行结果了,也不用等着JMeter输出HTML了。
node_exporter+Prometheus+Grafana的数据展示逻辑
对性能测试来说,在常用的Grafana+Prometheus+Exporter的逻辑中,第一步要看的就是操作系统资源了。所以在这一篇中,我们将以node_exporter为例来说明一下操作系统抽取数据的逻辑,以便知道监控数据的来源,至于数据的含义,我们将在后续的文章中继续描述。
首先,我们还是要画一个图。
现在node_exporter可以支持很多个操作系统了。官方列表如下:
当然不是说只支持这些,你也可以扩展自己的Exporter。
配置node_exporter
node_exporter目录如下:
[root@7dgroup2 node_exporter-0.18.1.linux-amd64]# ll
total 16524
-rw-r--r-- 1 3434 3434 11357 Jun 5 00:50 LICENSE
-rwxr-xr-x 1 3434 3434 16878582 Jun 5 00:41 node_exporter
-rw-r--r-- 1 3434 3434 463 Jun 5 00:50 NOTICE
启动:
[root@7dgroup2 node_exporter-0.18.1.linux-amd64]#./node_exporter --web.listen-address=:9200 &
是不是很简洁?如果想看更多的功能 ,可以查看下它的帮助。
配置Prometheus
先下载Prometheus:
[root@7dgroup2 data]# wget -c https://github.com/prometheus/prometheus/releases/download/v2.14.0/prometheus-2.14.0.linux-amd64.tar.gz
..........
100%[=============================================================================================>] 58,625,125 465KB/s in 6m 4s
2019-11-29 15:40:16 (157 KB/s) - ‘prometheus-2.14.0.linux-amd64.tar.gz’ saved [58625125/58625125]
[root@7dgroup2 data]
解压之后,我们可以看到目录结构如下:
[root@7dgroup2 prometheus-2.11.1.linux-amd64]# ll
total 120288
drwxr-xr-x. 2 3434 3434 4096 Jul 10 23:26 console_libraries
drwxr-xr-x. 2 3434 3434 4096 Jul 10 23:26 consoles
drwxr-xr-x. 3 root root 4096 Nov 30 12:55 data
-rw-r--r--. 1 3434 3434 11357 Jul 10 23:26 LICENSE
-rw-r--r--. 1 root root 35 Aug 7 23:19 node.yml
-rw-r--r--. 1 3434 3434 2770 Jul 10 23:26 NOTICE
-rwxr-xr-x. 1 3434 3434 76328852 Jul 10 21:53 prometheus
-rw-r--r-- 1 3434 3434 1864 Sep 21 09:36 prometheus.yml
-rwxr-xr-x. 1 3434 3434 46672881 Jul 10 21:54 promtool
[root@7dgroup2 prometheus-2.11.1.linux-amd64]#
在prometheus.yml
中添加如下配置,以取数据:
- job_name: 's1'
static_configs:
- targets: ['172.17.211.143:9200']
启动:
[root@7dgroup2 data]# ./prometheus --config.file=prometheus.yml &
这样就行了吗?当然不是。根据上面的流程图,我们还需要配置Grafana。
配置Grafana
首先配置一个数据源,非常简单。如下所示:
再配置一个node_exporter的模板,比如我这里选择了官方模板(ID:11074),展示如下:
数据逻辑说明
说明完上面的过程之后,对我们做性能测试和分析的人来说,最重要的,就是要知道数据的来源和含义了。
拿上面图中的CPU使用率来说吧(因为CPU使用率是非常重要的一个计数器,所以我们今天先拿它来开刀)。
我们先点一下title上的edit,看一下它的query语句。
avg(irate(node_cpu_seconds_total{instance=~"$node",mode="system"}[30m])) by (instance)
avg(irate(node_cpu_seconds_total{instance=~"$node",mode="user"}[30m])) by (instance)
avg(irate(node_cpu_seconds_total{instance=~"$node",mode="iowait"}[30m])) by (instance)
1 - avg(irate(node_cpu_seconds_total{instance=~"$node",mode="idle"}[30m])) by (instance)
这些都是从Prometheus中取出来的数据,查询语句读了Prometheus中node_cpu_seconds_total
的不同的模块数据。
下面我们来看一下,node_exporter
暴露出来的计数器。
这些值和top一样,都来自于/proc/
目录。下面这张图是top数据,我们可以比对一下。
到此,我们就了解到了操作系统中监控数据的取值逻辑了,也就是从操作系统本身的计数器中取出值来,然后传给Prometheus,再由Grafana中的query语句查出相应的数据,最后由Grafana展示在界面上。