Python内置了很多有用的函数,我们可以直接调用。
要调用一个函数,需要知道函数的名称和参数,比如求绝对值的函数abs,只有一个参数。可以直接从Python的官方网站查看文档:
http://docs.python.org/3/library/functions.html#abs
也可以在交互式命令行通过help(abs)查看abs函数的帮助信息。
调用abs函数:
print abs(100) print abs(-20) print abs(12.34)

而max函数max()可以接收任意多个参数,并返回最大的那个:
print max(1,2) print max(2,3,1,-5)

数据类型转换
Python内置的常用函数还包括数据类型转换函数,比如int()函数可以把其他数据类型转换为整数:
print int('123') print int(12.34) print float('12.34') print str(1.23) print str(100) print bool(1) print bool('')

函数名其实就是指向一个函数对象的引用,完全可以把函数名赋给一个变量,相当于给这个函数起了一个“别名”:
a = abs print a(-1)

练习
请利用Python内置的hex()函数把一个整数转换成十六进制表示的字符串:
n1 = 255 n2 = 1000 print hex(n1) print hex(n2)

定义函数
在Python中,定义一个函数要使用def语句,依次写出函数名、括号、括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用return语句返回。
我们以自定义一个求绝对值的my_abs函数为例:
def my_abs(x): if x>= 0: return x else: return -x print my_abs(-3)

请自行测试并调用my_abs看看返回结果是否正确。
请注意,函数体内部的语句在执行时,一旦执行到return时,函数就执行完毕,并将结果返回。因此,函数内部通过条件判断和循环可以实现非常复杂的逻辑。
如果没有return语句,函数执行完毕后也会返回结果,只是结果为None。
return None可以简写为return。
在Python交互环境中定义函数时,注意Python会出现...的提示。函数定义结束后需要按两次回车重新回到>>>提示符下:
使用more+*.py可查看内容

空函数
如果想定义一个什么事也不做的空函数,可以用pass语句:
#coding=utf-8 def nop(): pass
pass语句什么都不做,那有什么用?实际上pass可以用来作为占位符,比如现在还没想好怎么写函数的代码,就可以先放一个pass,让代码能运行起来。
pass还可以用在其他语句里,比如:
返回多个值
函数可以返回多个值吗?答案是肯定的。
比如在游戏中经常需要从一个点移动到另一个点,给出坐标、位移和角度,就可以计算出新的新的坐标:
#coding=utf-8 import math def move(x,y,step,angle=0): nx = x + step * math.cos(angle) ny = y - step * math.sin(angle) return nx, ny
import math语句表示导入math包,并允许后续代码引用math包里的sin、cos等函数。
函数的参数
定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了。对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解。
Python的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数、可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。
位置参数
我们先写一个计算x2的函数:
#coding=utf-8 import math def power(x): return x * x print power(5)
对于power(x)函数,参数x就是一个位置参数。
当我们调用power函数时,必须传入有且仅有的一个参数x:

现在,如果我们要计算x3怎么办?可以再定义一个power3函数,但是如果要计算x4、x5……怎么办?我们不可能定义无限多个函数。
你也许想到了,可以把power(x)修改为power(x, n),用来计算xn,说干就干:
def power(x, n): s = 1 while n > 0: n = n - 1 s = s * x return s print power(5,3)

而对于n > 2的其他情况,就必须明确地传入n,比如power(5, 3)。
从上面的例子可以看出,默认参数可以简化函数的调用。设置默认参数时,有几点要注意:
一是必选参数在前,默认参数在后,否则Python的解释器会报错(思考一下为什么默认参数不能放在必选参数前面);
二是如何设置默认参数。
当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。
使用默认参数有什么好处?最大的好处是能降低调用函数的难度。
举个例子,我们写个一年级小学生注册的函数,需要传入name和gender两个参数:
def enroll(name, gender): print'name:',name print'gender:',gender enroll('demacia','3')

如果要继续传入年龄、城市等信息怎么办?这样会使得调用函数的复杂度大大增加。
我们可以把年龄和城市设为默认参数:
这样,大多数学生注册时不需要提供年龄和城市,只提供必须的两个参数:
def enroll(name, gender,age=6, city='Beijing'): print 'name:',name print 'gender:',gender print 'age:',age print 'city:',city enroll('demacia','3')
只有与默认参数不符的学生才需要提供额外的信息:
def enroll(name, gender,age=6, city='Beijing'): print 'name:',name print 'gender:',gender print 'age:',age print 'city:',city enroll('xinzhao','m',city="juxiashi")

可见,默认参数降低了函数调用的难度,而一旦需要更复杂的调用时,又可以传递更多的参数来实现。无论是简单调用还是复杂调用,函数只需要定义一个。
有多个默认参数时,调用的时候,既可以按顺序提供默认参数,比如调用enroll('Bob', 'M', 7),意思是,除了name,gender这两个参数外,最后1个参数应用在参数age上,city参数由于没有提供,仍然使用默认值。
也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上。比如调用enroll('Adam', 'M', city='Tianjin'),意思是,city参数用传进去的值,其他默认参数继续使用默认值。
默认参数很有用,但使用不当,也会掉坑里。默认参数有个最大的坑,演示如下:
先定义一个函数,传入一个list,添加一个END再返回:
def add_end(L=[]): L.append('END') return L
>>> add_end([1, 2, 3]) [1, 2, 3, 'END'] >>> add_end(['x', 'y', 'z']) ['x', 'y', 'z', 'END']
当你使用默认参数调用时,一开始结果也是对的:
>>> add_end() ['END']
但是,再次调用add_end()时,结果就不对了:
>>> add_end() ['END', 'END'] >>> add_end() ['END', 'END', 'END']
很多初学者很疑惑,默认参数是[],但是函数似乎每次都“记住了”上次添加了'END'后的list。
原因解释如下:
Python函数在定义的时候,默认参数L的值就被计算出来了,即[],因为默认参数L也是一个变量,它指向对象[],每次调用该函数,如果改变了L的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]了。
所以,定义默认参数要牢记一点:默认参数必须指向不变对象!
要修改上面的例子,我们可以用None这个不变对象来实现:
def add_end(L=None): if L is None: L = [] L.append('END') return L
现在,无论调用多少次,都不会有问题:
>>> add_end() ['END'] >>> add_end() ['END']
为什么要设计str、None这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。此外,由于对象不变,多任务环境下同时读取对象不需要加锁,同时读一点问题都没有。我们在编写程序时,如果可以设计一个不变对象,那就尽量设计成不变对象。
可变参数
在Python函数中,还可以定义可变参数。顾名思义,可变参数就是传入的参数个数是可变的,可以是1个、2个到任意个,还可以是0个。
我们以数学题为例子,给定一组数字a,b,c……,请计算a2 + b2 + c2 + ……。
要定义出这个函数,我们必须确定输入的参数。由于参数个数不确定,我们首先想到可以把a,b,c……作为一个list或tuple传进来,这样,函数可以定义如下:
def calc(numbers): sum = 0 for n in numbers: sum = sum + n * n return sum print calc([1,2,3]) print calc([1,3,5,7])
但是调用的时候,需要先组装出一个list或tuple:

如果利用可变参数,调用函数的方式可以简化成这样:所以,我们把函数的参数改为可变参数:
def calc(*numbers): sum = 0 for n in numbers: sum = sum + n * n return sum print calc(1,2,3)

定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个*号。在函数内部,参数numbers接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:
def calc(*numbers): sum = 0 for n in numbers: sum = sum + n * n return sum print calc(1,2) print calc()

如果已经有一个list或者tuple,要调用一个可变参数怎么办?可以这样做:
#coding=utf-8 def calc(*numbers): sum = 0 for n in numbers: sum = sum + n * n return sum nums = [1,2,3] print calc(nums[0],nums[1],nums[2])

这种写法当然是可行的,问题是太繁琐,所以Python允许你在list或tuple前面加一个*号,把list或tuple的元素变成可变参数传进去:
#coding=utf-8 def calc(*numbers): sum = 0 for n in numbers: sum = sum + n * n return sum nums = [1,2,3] print calc(*nums)

*nums表示把nums这个list的所有元素作为可变参数传进去。这种写法相当有用,而且很常见。
关键字参数
可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。请看示例:
def person(name,age,**kw): print ('name:',name,'age:','age','other:',kw) person('Michael',30)
函数person除了必选参数name和age外,还接受关键字参数kw。在调用该函数时,可以只传入必选参数:

也可以传入任意个数的关键字参数:
#coding=utf-8 def person(name,age,**kw): print ('name:',name,'age:','age','other:',kw) person('Bob',35,city='Beijing') person('Adam',45,gender='M',job='Engineer')

关键字参数有什么用?它可以扩展函数的功能。比如,在person函数里,我们保证能接收到name和age这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。
和可变参数类似,也可以先组装出一个dict,然后,把该dict转换为关键字参数传进去:
#coding=utf-8 def person(name,age,**kw): print ('name:',name,'age:','age','other:',kw) extra = {'city':'Beijing','job':'Enginerr'} person('Jack',24,city=extra['city'], job=extra['job'])

当然,上面复杂的调用可以用简化的写法:
#coding=utf-8 def person(name,age,**kw): print ('name:',name,'age:','age','other:',kw) extra = {'city':'Beijing','job':'Enginerr'} person('Jack',24,**extra)

**extra表示把extra这个dict的所有key-value用关键字参数传入到函数的**kw参数,kw将获得一个dict,注意kw获得的dict是extra的一份拷贝,对kw的改动不会影响到函数外的extra。
命名关键字参数
对于关键字参数,函数的调用者可以传入任意不受限制的关键字参数。至于到底传入了哪些,就需要在函数内部通过kw检查。
仍以person()函数为例,我们希望检查是否有city和job参数:
但是调用者仍可以传入不受限制的关键字参数
#coding=utf-8 def person(name,age,**kw): if 'city' in kw: pass if 'job' in kw: pass print ('name:',name,'age:',age,'other:',kw) print person('Jack',24,city='beijing',addr='Chaoyang',zipcode=123456)

如果要限制关键字参数的名字,就可以用命名关键字参数,例如,只接收city和job作为关键字参数。这种方式定义的函数如下:
.
.
.
.
.
.
.
省略,后续内容不通顺,熟悉以后再来解决
递归函数
在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。
举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以看出:
fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n
所以,fact(n)可以表示为n x fact(n-1),只有n=1时需要特殊处理。
于是,fact(n)用递归的方式写出来就是:
#coding=utf-8 def fact (n): if n ==1: return 1 return n * fact(n -1) print fact(1) print fact(5) print fact(100)

如果我们计算fact(5),可以根据函数定义看到计算过程如下:
===> fact(5) ===> 5 * fact(4) ===> 5 * (4 * fact(3)) ===> 5 * (4 * (3 * fact(2))) ===> 5 * (4 * (3 * (2 * fact(1)))) ===> 5 * (4 * (3 * (2 * 1))) ===> 5 * (4 * (3 * 2)) ===> 5 * (4 * 6) ===> 5 * 24 ===> 120
递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。
使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试fact(1000):
def fact (n): if n ==1: return 1 return n * fact(n -1) print fact(1000)

解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。
尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。
上面的fact(n)函数由于return n * fact(n - 1)引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:
#coding=utf-8 def fact(n): return fact_iter (n,1) def fact_iter(num,product): if num == 1: return product return fact_iter(num - 1,num * product) print fact(1000)
可以看到,return fact_iter(num - 1, num * product)仅返回递归函数本身,num - 1和num * product在函数调用前就会被计算,不影响函数调用。
fact(5)对应的fact_iter(5, 1)的调用如下:
===> fact_iter(5, 1) ===> fact_iter(4, 5) ===> fact_iter(3, 20) ===> fact_iter(2, 60) ===> fact_iter(1, 120) ===> 120
尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。
遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)函数改成尾递归方式,也会导致栈溢出。
小结
使用递归函数的优点是逻辑简单清晰,缺点是过深的调用会导致栈溢出。
针对尾递归优化的语言可以通过尾递归防止栈溢出。尾递归事实上和循环是等价的,没有循环语句的编程语言只能通过尾递归实现循环。
Python标准的解释器没有针对尾递归做优化,任何递归函数都存在栈溢出的问题。
