zoukankan      html  css  js  c++  java
  • PythonStudy——IO模型

    IO模型

    模型就是解决某个问题的套路

    IO问题:

    输入输出

    阻塞IO模型  (blocking IO)

    我要一个用户名用来执行登陆操作,问题用户名需要用户输入,输入需要耗时, 如果输入没有完成,后续逻辑无法继续,所以默认的处理方式就是 等待!!!

    将当前进程阻塞住,切换至其他进程执行,等到按下回车键,拿到了一个用户名,再唤醒刚才的进程,将状态调整为就绪态

     

    在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:

        当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network io来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。

        而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。
        所以,blocking IO的特点就是在IO执行的两个阶段(等待数据和拷贝数据两个阶段)都被block了。

        几乎所有的程序员第一次接触到的网络编程都是从listen()、send()、recv() 等接口开始的,使用这些接口可以很方便的构建服务器/客户机的模型。然而大部分的socket接口都是阻塞型的。如下图

        ps:所谓阻塞型接口是指系统调用(一般是IO接口)不返回调用结果并让当前线程一直阻塞,只有当该系统调用获得结果或者超时出错时才返回。

        实际上,除非特别指定,几乎所有的IO接口 ( 包括socket接口 ) 都是阻塞型的。这给网络编程带来了一个很大的问题,如在调用recv(1024)的同时,线程将被阻塞,在此期间,线程将无法执行任何运算或响应任何的网络请求。

     

    存在的问题

    当执行到recv时,如果对象并没有发送数据,程序阻塞了,无法执行其他任务

    解决方案

        多线程或多进程

    当客户端并发量非常大的时候,服务器可能就无法开启新的线程或进程,如果不对数量加以限制 服务器就崩溃了

        线程池或进程池

    首先限制了数量 保证服务器正常运行,但是问题是,如果客户端都处于阻塞状态,这些线程也阻塞了

        协程

    使用一个线程处理所有客户端,当一个客户端处于阻塞状态时可以切换至其他客户端任务

     

    非阻塞IO模型

    阻塞IO模型在执行recv 和 accept 时 都需要经历wait_data

    非阻塞IO即 在执行recv 和accept时 不会阻塞 可以继续往下执行

     Linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:

        从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是用户就可以在本次到下次再发起read询问的时间间隔内做其他事情,或者直接再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存(这一阶段仍然是阻塞的),然后返回。

        也就是说非阻塞的recvform系统调用调用之后,进程并没有被阻塞,内核马上返回给进程,如果数据还没准备好,此时会返回一个error。进程在返回之后,可以干点别的事情,然后再发起recvform系统调用。重复上面的过程,循环往复的进行recvform系统调用。这个过程通常被称之为轮询。轮询检查内核数据,直到数据准备好,再拷贝数据到进程,进行数据处理。需要注意,拷贝数据整个过程,进程仍然是属于阻塞的状态。

        所以,在非阻塞式IO中,用户进程其实是需要不断的主动询问kernel数据准备好了没有。

     

    如何使用

    将server的blocking设置为False 即设置非阻塞

    存在的问题 

    这样一来 你的进程 效率 非常高 没有任何的阻塞

    很多情况下 并没有数据需要处理,但是我们的进程也需要不停的询问操作系统 会导致CPU占用过高

    而且是无意义的占用

    非阻塞IO模型绝不被推荐。

        我们不能否则其优点:能够在等待任务完成的时间里干其他活了(包括提交其他任务,也就是 “后台” 可以有多个任务在“”同时“”执行)。

        但是也难掩其缺点:

    #1. 循环调用recv()将大幅度推高CPU占用率;这也是我们在代码中留一句time.sleep(2)的原因,否则在低配主机下极容易出现卡机情况
    #2. 任务完成的响应延迟增大了,因为每过一段时间才去轮询一次read操作,而任务可能在两次轮询之间的任意时间完成。这会导致整体数据吞吐量的降低。

        此外,在这个方案中recv()更多的是起到检测“操作是否完成”的作用,实际操作系统提供了更为高效的检测“操作是否完成“作用的接口,例如select()多路复用模式,可以一次检测多个连接是否活跃。

     

     

    多路复用IO  (IO multiplexing)

        IO multiplexing这个词可能有点陌生,但是如果我说select/epoll,大概就都能明白了。有些地方也称这种IO方式为事件驱动IO(event driven IO)。我们都知道,select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:

        当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。
        这个图和blocking IO的图其实并没有太大的不同,事实上还更差一些。因为这里需要使用两个系统调用(select和recvfrom),而blocking IO只调用了一个系统调用(recvfrom)。但是,用select的优势在于它可以同时处理多个connection。

        强调:

        1. 如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。

        2. 在多路复用模型中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。

        结论: select的优势在于可以处理多个连接,不适用于单个连接  

        select监听fd变化的过程分析:

    #用户进程创建socket对象,拷贝监听的fd到内核空间,每一个fd会对应一张系统文件表,内核空间的fd响应到数据后,就会发送信号给用户进程数据已到;
    #用户进程再发送系统调用,比如(accept)将内核空间的数据copy到用户空间,同时作为接受数据端内核空间的数据清除,这样重新监听时fd再有新的数据又可以响应到了(发送端因为基于TCP协议所以需要收到应答后才会清除)。

        该模型的优点:

    #相比其他模型,使用select() 的事件驱动模型只用单线程(进程)执行,占用资源少,不消耗太多 CPU,同时能够为多客户端提供服务。如果试图建立一个简单的事件驱动的服务器程序,这个模型有一定的参考价值。

        该模型的缺点:

    #首先select()接口并不是实现“事件驱动”的最好选择。因为当需要探测的句柄值较大时,select()接口本身需要消耗大量时间去轮询各个句柄。很多操作系统提供了更为高效的接口,如linux提供了epoll,BSD提供了kqueue,Solaris提供了/dev/poll,…。如果需要实现更高效的服务器程序,类似epoll这样的接口更被推荐。遗憾的是不同的操作系统特供的epoll接口有很大差异,所以使用类似于epoll的接口实现具有较好跨平台能力的服务器会比较困难。
    #其次,该模型将事件探测和事件响应夹杂在一起,一旦事件响应的执行体庞大,则对整个模型是灾难性的。

     

  • 相关阅读:
    (三)3-5 Python生成式和生成器
    (三)3-4 Python的高阶函数和匿名函数
    Linux下安装Python3
    Python math函数库
    今日头条as,cp,_signature参数破解
    使用scrapy实现分布式爬虫
    scrapy框架持久化存储
    Python中使用rsa加密
    使用Python进行微博登录
    WebDriverWait 显示等待
  • 原文地址:https://www.cnblogs.com/tingguoguoyo/p/11000462.html
Copyright © 2011-2022 走看看