zoukankan      html  css  js  c++  java
  • 【练习5.12】阈值化cvThreshold、自适应阈值cvAdaptiveThreshold、各参数效果对比

    提纲
    题目要求
    程序代码
    结果图片
    要言妙道

      

    题目要求:

     载入一副场景丰富的图像,使用cvThreshold()函数对其进行操作,设置阈值为128,。

    a、依次用表5-5中的设置类型并显示结果

    b、用函数cvAdaptiveThreshold()设param1=5

    c、先设param1=0,重复b,再设param1=-5,重复b 

    程序代码:

      1 // OpenCVExerciseTesting.cpp : 定义控制台应用程序的入口点。
      2 //
      3 //D:\Work\Work_Programming\Source\Image\lena.jpg
      4 
      5 
      6 #include "stdafx.h"
      7 #include <cv.h>
      8 #include <highgui.h>
      9 #include <iostream>
     10 
     11 #include <opencv2/legacy/legacy.hpp>
     12 //#pragma comment(lib, "opencv_legacy2411.lib")
     13 
     14 using namespace cv;
     15 using namespace std;
     16 
     17 //函数声明-->--->-->--->-->--->-->--->//
     18 
     19 
     20 //<--<--<--<--<--<--<--<--<--函数声明//
     21 
     22 int _tmain(int argc, _TCHAR* argv[])
     23 {
     24     const char * soutceFile = "D:\Work\Work_Programming\Source\Image\OpenCVExerciseImage\第5章\山水风景.jpg";
     25     IplImage * image_Resource = cvLoadImage(soutceFile, CV_LOAD_IMAGE_UNCHANGED);
     26     assert(image_Resource);
     27       
     28     cvNamedWindow("原始图像", 0);    
     29     cvNamedWindow("题目_a_1", 0);
     30     cvNamedWindow("题目_a_2", 0);
     31     cvNamedWindow("题目_a_3", 0);
     32     cvNamedWindow("题目_a_4", 0);
     33     cvNamedWindow("题目_a_5", 0);
     34     cvNamedWindow("题目_b_1", 0);
     35     cvNamedWindow("题目_b_2", 0);
     36     cvNamedWindow("题目_c_1", 0);
     37     cvNamedWindow("题目_c_2", 0);
     38     cvNamedWindow("题目_c_3", 0);
     39     cvNamedWindow("题目_c_4", 0);
     40 
     41     IplImage * image_Gray = cvCreateImage(cvSize(image_Resource->width, image_Resource->height), IPL_DEPTH_8U, 1);
     42     
     43     //使用cvCvtColor和cvCopy这些函数前,都应该对参数进行验证再使用
     44     if (image_Resource->nChannels != 3)
     45     {
     46         cout << "加载的图像必须为彩色图片" << endl;
     47         return 0;
     48     }
     49     
     50     cvCvtColor(image_Resource, image_Gray, CV_RGB2GRAY);
     51 
     52     cvShowImage("原始图像", image_Gray);
     53      
     54     //---------------------------a:开始--------------------------------//
     55 
     56     double max_value = 255;
     57     double threshold = 128;
     58 
     59     IplImage * image_Result_a_1 = cvCloneImage(image_Gray);
     60     cvZero(image_Result_a_1);
     61     cvThreshold(image_Gray, image_Result_a_1, threshold, max_value, CV_THRESH_BINARY);
     62     cvShowImage("题目_a_1", image_Result_a_1);
     63 
     64 
     65     IplImage * image_Result_a_2 = cvCloneImage(image_Gray);
     66     cvZero(image_Result_a_2);
     67     cvThreshold(image_Gray, image_Result_a_2, threshold, max_value, CV_THRESH_BINARY_INV);
     68     cvShowImage("题目_a_2", image_Result_a_2);
     69 
     70 
     71     IplImage * image_Result_a_3 = cvCloneImage(image_Gray);
     72     cvZero(image_Result_a_3);
     73     cvThreshold(image_Gray, image_Result_a_3, threshold, max_value, CV_THRESH_TRUNC);
     74     cvShowImage("题目_a_3", image_Result_a_3);
     75 
     76     IplImage * image_Result_a_4 = cvCloneImage(image_Gray);
     77     cvZero(image_Result_a_4);
     78     cvThreshold(image_Gray, image_Result_a_4, threshold, max_value, CV_THRESH_TOZERO_INV);
     79     cvShowImage("题目_a_4", image_Result_a_4);
     80 
     81     IplImage * image_Result_a_5 = cvCloneImage(image_Gray);
     82     cvZero(image_Result_a_5);
     83     cvThreshold(image_Gray, image_Result_a_5, threshold, max_value, CV_THRESH_TOZERO);
     84     cvShowImage("题目_a_5", image_Result_a_5);
     85     //---------------------------a:结束--------------------------------//    
     86 
     87     //---------------------------b:开始--------------------------------//
     88 
     89     IplImage * image_Result_b_1 = cvCloneImage(image_Gray);
     90     cvZero(image_Result_b_1);
     91     cvAdaptiveThreshold(image_Gray, image_Result_b_1, max_value, CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY, 3, 5);
     92 
     93     cvShowImage("题目_b_1", image_Result_b_1);
     94 
     95 
     96     IplImage * image_Result_b_2 = cvCloneImage(image_Gray);
     97     cvZero(image_Result_b_2);
     98     cvAdaptiveThreshold(image_Gray, image_Result_b_2, max_value, CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY_INV,3,5);
     99 
    100     cvShowImage("题目_b_2", image_Result_b_2);
    101 
    102     //---------------------------b:结束--------------------------------//    
    103 
    104     //---------------------------c:开始--------------------------------//
    105  
    106     IplImage * image_Result_c_1 = cvCloneImage(image_Gray);
    107     cvZero(image_Result_c_1);
    108     cvAdaptiveThreshold(image_Gray, image_Result_c_1, max_value, CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY, 3, 0);
    109 
    110     cvShowImage("题目_c_1", image_Result_c_1);
    111 
    112 
    113     IplImage * image_Result_c_2 = cvCloneImage(image_Gray);
    114     cvZero(image_Result_c_2);
    115     cvAdaptiveThreshold(image_Gray, image_Result_c_2, max_value, CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY_INV, 3, 0);
    116 
    117     cvShowImage("题目_c_2", image_Result_c_2);
    118 
    119     IplImage * image_Result_c_3 = cvCloneImage(image_Gray);
    120     cvZero(image_Result_c_3);
    121     cvAdaptiveThreshold(image_Gray, image_Result_c_3, max_value, CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY, 3, -5);
    122 
    123     cvShowImage("题目_c_3", image_Result_c_3);
    124 
    125 
    126     IplImage * image_Result_c_4 = cvCloneImage(image_Gray);
    127     cvZero(image_Result_c_4);
    128     cvAdaptiveThreshold(image_Gray, image_Result_c_4, max_value, CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY_INV, 3, -5);
    129 
    130     cvShowImage("题目_c_4", image_Result_c_4);
    131 
    132     //---------------------------c:结束--------------------------------//    
    133 
    134     cvWaitKey(0);
    135 
    136     cvReleaseImage(&image_Resource);
    137     cvReleaseImage(&image_Result_a_1);
    138     cvReleaseImage(&image_Result_a_2);
    139     cvReleaseImage(&image_Result_a_3);
    140     cvReleaseImage(&image_Result_a_4);
    141     cvReleaseImage(&image_Result_a_5);
    142     cvReleaseImage(&image_Result_b_1);
    143     cvReleaseImage(&image_Result_b_2);
    144     cvReleaseImage(&image_Result_c_1);
    145     cvReleaseImage(&image_Result_c_2);
    146     cvReleaseImage(&image_Result_c_3);
    147     cvReleaseImage(&image_Result_c_4);
    148 
    149     cvDestroyWindow("原始图像");     
    150     cvDestroyWindow("题目_a_1");
    151     cvDestroyWindow("题目_a_2");
    152     cvDestroyWindow("题目_a_3");
    153     cvDestroyWindow("题目_a_4");
    154     cvDestroyWindow("题目_a_5");
    155     cvDestroyWindow("题目_b_1");
    156     cvDestroyWindow("题目_b_2");
    157     cvDestroyWindow("题目_c_1");
    158     cvDestroyWindow("题目_c_2");
    159     cvDestroyWindow("题目_c_3");
    160     cvDestroyWindow("题目_c_4");
    161 
    162     return 0;
    163 }
    164    

     

    结果图片:

    要言妙道:

     ①针对有很强照明或反射梯度的图像,需要根据梯度进行阈值化,自适应阈值技术非常有用,最有对比性的是《学习OpenCV》第161页使用cvThreshold和cvAdaptiveThreshold对图片处理的例子,当棋盘标定板有很强的照明梯度的时候,使用cvThreshold得不到完整的棋盘,但cvAdaptiveThreshold可以。

    ②cvAdaptiveThreshold的参数thresholdType ,官方文档的说明是 Thresholding type that must be either THRESH_BINARY or THRESH_BINARY_INV .,并不是cvThreshold的5种类型都能用

    ③CV_THRESH_TRUNC,对应的操作时dsti=(srci>T)?T:srci,其中T代表阈值,这点《学习OpenCV》中笔误

  • 相关阅读:
    Eclipse在线集成maven M2eclipse插件
    RBAC用户权限管理数据库设计
    Linux下修改mysql密码
    Red hat 6.4下面的qt安装
    export default {} 和new Vue()区别
    Ajax中POST和GET的区别
    JS es6-Symbol
    JS es6编程规范
    JS之箭头函数
    JS异步加载的方式
  • 原文地址:https://www.cnblogs.com/tingshuixuan2012/p/4457612.html
Copyright © 2011-2022 走看看