zoukankan      html  css  js  c++  java
  • 【练习8.11】等级匹配cvMatchContourTrees、凸缺陷计算cvConvexityDefects

    页内索引
    题目要求 程序代码 结果图片 要言妙道 借鉴参考

      

    题目要求:

     缩放旋转字符A,然后保存

    用cvMatchContourTrees和cvConvexityDefects处理这些图像,查看匹配效果

    程序代码:

      1 // OpenCVExerciseTesting.cpp : 定义控制台应用程序的入口点。
      2 //
      3 //    string file_full_name = "D:\Work\Work_Programming\Source\Image\OpenCVExerciseImage\第8章\r20.jpg";
      4 
      5 
      6 #include "stdafx.h"
      7 #include<string>
      8 #include <cv.h>
      9 #include <highgui.h>
     10 #include <iostream>
     11 #include<math.h>
     12 
     13 #include <opencv2/legacy/legacy.hpp>
     14 //#pragma comment(lib, "opencv_legacy2411.lib")
     15 
     16 using namespace cv;
     17 using namespace std;
     18 
     19 //函数声明-->--->-->--->-->--->-->--->//
     20 
     21 CvSeq * ApproxImage(IplImage * image_source);
     22 double UseContourTreesToMatch(IplImage * image_1, IplImage * image_2);
     23 void CalcConvexityDefects(IplImage * image);
     24 
     25 //<--<--<--<--<--<--<--<--<--函数声明//
     26 
     27 int _tmain(int argc, _TCHAR* argv[])
     28 {
     29     string file_full_name[9] = { "D:\Work\Work_Programming\Source\Image\OpenCVExerciseImage\第8章\字符A.jpg"
     30         , "D:\Work\Work_Programming\Source\Image\OpenCVExerciseImage\第8章\字符A_-30度.jpg"
     31         , "D:\Work\Work_Programming\Source\Image\OpenCVExerciseImage\第8章\字符A_50%.jpg"
     32         , "D:\Work\Work_Programming\Source\Image\OpenCVExerciseImage\第8章\字符A_120度.jpg"
     33         , "D:\Work\Work_Programming\Source\Image\OpenCVExerciseImage\第8章\字符A_150%_-60度.jpg"
     34         , "D:\Work\Work_Programming\Source\Image\OpenCVExerciseImage\第8章\字符A_200%.jpg"
     35         , "D:\Work\Work_Programming\Source\Image\OpenCVExerciseImage\第8章\字符F.jpg"
     36         , "D:\Work\Work_Programming\Source\Image\OpenCVExerciseImage\第8章\字符A.jpg"
     37         , "D:\Work\Work_Programming\Source\Image\OpenCVExerciseImage\第8章\Other.jpg" };
     38 
     39     IplImage * image_source[9];
     40 
     41     image_source[0] = cvLoadImage(file_full_name[0].c_str(), CV_LOAD_IMAGE_GRAYSCALE);
     42     CV_Assert(image_source[0]);
     43     cvShowImage("原始图像", image_source[0]);
     44 
     45     string window_name = "";
     46     for (int i = 1; i < 9; ++i)
     47     {    
     48         image_source[i] = cvLoadImage(file_full_name[i].c_str(), CV_LOAD_IMAGE_GRAYSCALE);
     49         CV_Assert(image_source[i]);
     50 
     51         window_name = window_name + "";
     52         cvShowImage(window_name.c_str(), image_source[i]);
     53 
     54         double cTree = UseContourTreesToMatch(image_source[0], image_source[i]);
     55 
     56         cout << cTree << endl;
     57     }
     58 
     59     //输出凸缺陷的信息
     60     cout << endl << endl<<"凸缺陷计算:"<<endl;
     61     CalcConvexityDefects(image_source[5]);
     62 
     63     cvWaitKey(0);
     64     //system("pause");
     65 
     66     cvDestroyAllWindows();
     67 
     68     return 0;
     69 }
     70 
     71 double UseContourTreesToMatch(IplImage * image_1, IplImage * image_2)
     72 {
     73     CvSeq * approx_seq1 = ApproxImage(image_1);
     74 
     75     CvMemStorage *storage1 = cvCreateMemStorage();
     76     CvContourTree * contoruTree1=NULL;
     77     contoruTree1 = cvCreateContourTree(approx_seq1, storage1, 0);
     78 
     79     CvSeq * approx_seq2 = ApproxImage(image_2);
     80     CvMemStorage *storage2 = cvCreateMemStorage();
     81     CvContourTree * contoruTree2 = NULL;
     82     contoruTree2 = cvCreateContourTree(approx_seq2, storage2, 0);
     83 
     84     double result = cvMatchContourTrees(contoruTree1, contoruTree2, CV_CONTOUR_TREES_MATCH_I1, 100);
     85     return result;
     86 }
     87 
     88 CvSeq * ApproxImage(IplImage * image_source)
     89 {
     90     CV_Assert(image_source);
     91 
     92     IplImage * image_binary = cvCloneImage(image_source);
     93     cvZero(image_binary);
     94 
     95     cvThreshold(image_source, image_binary, 128, 255, CV_THRESH_BINARY);
     96 
     97     CvMemStorage *storage = cvCreateMemStorage();
     98     CvSeq* first_contour = NULL;
     99     int contour_num;
    100     contour_num = cvFindContours(image_binary, storage, &first_contour, sizeof(CvContour), CV_RETR_TREE);//注意:cvMatchContourTrees匹配的时候,cvFindContours如果用CV_RETR_LIST得不到结果 
    101 
    102     double contour_length;
    103     contour_length = cvContourPerimeter(first_contour);
    104 
    105     double perimeter = contour_length / 66;
    106     CvMemStorage* storage_approx = cvCreateMemStorage();
    107 
    108     CvSeq *seq_approx = NULL;
    109 
    110     seq_approx = cvApproxPoly(first_contour, sizeof(CvContour), storage_approx, CV_POLY_APPROX_DP, perimeter, 0);
    111 
    112     cvReleaseImage(&image_binary);
    113 
    114     return seq_approx;
    115 }
    116  
    117 void CalcConvexityDefects(IplImage * image)
    118 {
    119     //查找轮廓
    120     IplImage * image_temp = cvCloneImage(image);
    121     cvZero(image_temp);
    122     cvThreshold(image, image_temp, 128, 255, CV_THRESH_BINARY);
    123 
    124     CvMemStorage * storage = cvCreateMemStorage();
    125     CvSeq * first_contour;
    126     int contour_num = cvFindContours(image_temp, storage, &first_contour, sizeof(CvContour), CV_RETR_EXTERNAL);
    127 
    128     //IplImage *image_contour = cvCloneImage(image);
    129     //cvZero(image_contour);
    130     //cvDrawContours(image_contour, first_contour, cvScalar(255), cvScalar(255), 0);
    131     //cvShowImage("轮廓", image_contour);
    132 
    133 
    134     //检查是否是凸轮廓
    135     int isContourConvexity = cvCheckContourConvexity(first_contour);
    136 
    137     //计算凸包
    138     CvMemStorage * storage_hull = cvCreateMemStorage();
    139     CvSeq * seq_convex = cvConvexHull2(first_contour, storage_hull);
    140 
    141     //计算凸缺陷
    142     //cvFixPointOrder(polyOutline, hull);    
    143     CvMemStorage * storage_defects = cvCreateMemStorage();
    144     CvSeq * seq_defects = cvConvexityDefects(first_contour, seq_convex, storage_defects);
    145 
    146     for (int i = 0; i < seq_defects->total; ++i)
    147     {
    148         CvConvexityDefect * defect = (CvConvexityDefect *)cvGetSeqElem(seq_defects, i);
    149 
    150         cout << defect->start->x << " " << defect->start->y << " "
    151             << defect->end->x << " " << defect->end->y << " "
    152             << defect->depth_point->x << " " << defect->depth_point->y << " "
    153             << defect->depth << endl;
    154     }
    155 
    156     cvReleaseMemStorage(&storage);
    157     cvReleaseMemStorage(&storage_hull);
    158     cvReleaseMemStorage(&storage_defects);
    159     cvReleaseImage(&image_temp);
    160 }

    结果图片:

    要言妙道:

    ①建立轮廓树前,为了得到较好的描述,需要首先使用函数cvApproxPoly,之后将轮廓排列(运用循环移动)成最初的三角形不怎么受到旋转影响的状态。

    ②注意,如果查找轮廓时 cvFindContours 的mode参数选择 CV_RETR_LIST或 CV_RETR_FLOODFILL ,则最后使用 cvMatchContourTrees 匹配的时候得不到有效的值

    ③再次强调, cvFindContours 查找轮廓前记得使用 cvCanny 或 cvThreshold 或 cvAdaptiveThreshold 处理图像 

    ④ cvConvexityDefects 的参数是 cvFindContours 和 cvConvexHull2 的结果

    借鉴参考:

  • 相关阅读:
    相机标定/校正(Camera Calibration)
    彩色图像直方图均衡(Histogram Equalization)
    SQL--数据的检索
    SQL--数据的增删改
    SQL--数据库的创建与管理
    java学习笔记之异常、断言
    Mysql学习笔记(二)
    初学机器学习(一)
    Mysql学习笔记(一)
    软件课设Day15
  • 原文地址:https://www.cnblogs.com/tingshuixuan2012/p/4526034.html
Copyright © 2011-2022 走看看