zoukankan      html  css  js  c++  java
  • 第二次 编程作业

    function plotData(X, y)
    %PLOTDATA Plots the data points X and y into a new figure 
    %   PLOTDATA(x,y) plots the data points with + for the positive examples
    %   and o for the negative examples. X is assumed to be a Mx2 matrix.
    
    % Create New Figure
    figure; hold on;
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Plot the positive and negative examples on a
    %               2D plot, using the option 'k+' for the positive
    %               examples and 'ko' for the negative examples.
    %
    
    
    % Find Indices of Positive and Negative Examples 
    pos = find(y==1); neg = find(y == 0);
    % Plot Examples 
    plot(X(pos, 1), X(pos, 2), 'k+','LineWidth', 2,  'MarkerSize', 7);
    plot(X(neg, 1), X(neg, 2), 'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 7);
    
    % =========================================================================
    hold off;
    
    end
     
    function g = sigmoid(z)
    %SIGMOID Compute sigmoid function
    %   g = SIGMOID(z) computes the sigmoid of z.
    
    % You need to return the following variables correctly 
    g = zeros(size(z));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the sigmoid of each value of z (z can be a matrix,
    %               vector or scalar).
    
    
    g = 1./(1+e.^(-z));
    
    
    % =============================================================
    
    end
    function [J, grad] = costFunction(theta, X, y)
    %COSTFUNCTION Compute cost and gradient for logistic regression
    %   J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
    %   parameter for logistic regression and the gradient of the cost
    %   w.r.t. to the parameters.
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    grad = zeros(size(theta));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta.
    %               You should set J to the cost.
    %               Compute the partial derivatives and set grad to the partial
    %               derivatives of the cost w.r.t. each parameter in theta
    %
    % Note: grad should have the same dimensions as theta
    %
    
    
    h_theta = sigmoid(X * theta);
    J = (-y' * log(h_theta)-(1-y)'*log(1-h_theta))/m;
    grad = X'*(h_theta-y)/m;% X'才可以满足*的条件,注意运算顺序
    
    
    
    
    
    
    % =============================================================
    
    end
    function p = predict(theta, X)
    %PREDICT Predict whether the label is 0 or 1 using learned logistic 
    %regression parameters theta
    %   p = PREDICT(theta, X) computes the predictions for X using a 
    %   threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)
    
    m = size(X, 1); % Number of training examples
    
    % You need to return the following variables correctly
    p = zeros(m, 1);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Complete the following code to make predictions using
    %               your learned logistic regression parameters. 
    %               You should set p to a vector of 0's and 1's
    %
    
    
    
    p = sigmoid(X*theta) >=0.5;% X: m * n theta: n * 1
    
    
    
    % =========================================================================
    
    
    end
    function [J, grad] = costFunctionReg(theta, X, y, lambda)
    %COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
    %   J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
    %   theta as the parameter for regularized logistic regression and the
    %   gradient of the cost w.r.t. to the parameters. 
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    grad = zeros(size(theta));
    %Note that you should not regularize the parameter θ0. 
    %In Octave/MATLAB, recall that indexing starts from 1, 
    %hence, you should not be regularizing the theta(1) parameter (which corresponds to θ0) in the code. 
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta.
    %               You should set J to the cost.
    %               Compute the partial derivatives and set grad to the partial
    %               derivatives of the cost w.r.t. each parameter in theta
    
    % X: m * n theta: n * 1 h_theta: m * 1
    %theta(1)就是 θ0
    h_theta = sigmoid(X * theta);
    J = (-y' * log(h_theta) - (1 - y)' * log(1 - h_theta)) / m +  lambda * (sum(theta.^2 )- (theta(1))^2) / (2 * m); //θ0不需要
    grad = (X' * (h_theta - y) + theta * lambda) / m;
    grad(1)=grad(1)-theta(1)*lambda/m;%θ0不需要
    
    
    % =============================================================
    
    end
  • 相关阅读:
    iOS
    iOS
    iOS
    CS页面-Asp.net+Spring.Net.Framework--SNF快速开发平台3.0
    SNF快速开发平台3.0之-界面个性化配置+10种皮肤+7种菜单-Asp.net+MVC4.0+WebAPI+EasyUI+Knockout
    SNF快速开发平台3.0之BS页面展示和九大优点-部分页面显示效果-Asp.net+MVC4.0+WebAPI+EasyUI+Knockout
    MVC通用控件库展示-MVC4.0+WebAPI+EasyUI+Knockout--SNF快速开发平台3.0
    已有打开的与此 Command 相关联的 DataReader,必须首先将它关闭。
    转:ECharts图表组件之简单关系图:如何轻松实现另类站点地图且扩展节点属性实现点击节点页面跳转
    转:zTree树控件入门之checkbox:如何动态设置节点的checkbox选择框启用与禁用状态(chkDisabled)
  • 原文地址:https://www.cnblogs.com/tingtin/p/12078142.html
Copyright © 2011-2022 走看看