zoukankan      html  css  js  c++  java
  • 第九周 测试二 + 编程作业

     

    编程作业

    function [mu sigma2] = estimateGaussian(X)
    %ESTIMATEGAUSSIAN This function estimates the parameters of a 
    %Gaussian distribution using the data in X
    %   [mu sigma2] = estimateGaussian(X), 
    %   The input X is the dataset with each n-dimensional data point in one row
    %   The output is an n-dimensional vector mu, the mean of the data set
    %   and the variances sigma^2, an n x 1 vector
    % 
    
    % Useful variables
    [m, n] = size(X);
    
    % You should return these values correctly
    mu = zeros(n, 1);
    sigma2 = zeros(n, 1);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the mean of the data and the variances
    %               In particular, mu(i) should contain the mean of
    %               the data for the i-th feature and sigma2(i)
    %               should contain variance of the i-th feature.
    %
    
    
    
       mu=mean(X)';
       sigma2=var(X,1)'; %第二个参数为1,表示1/N*。。。
    
    
    
    % =============================================================
    
    
    end

    function [bestEpsilon bestF1] = selectThreshold(yval, pval)
    %SELECTTHRESHOLD Find the best threshold (epsilon) to use for selecting
    %outliers
    %   [bestEpsilon bestF1] = SELECTTHRESHOLD(yval, pval) finds the best
    %   threshold to use for selecting outliers based on the results from a
    %   validation set (pval) and the ground truth (yval).
    %
    
    bestEpsilon = 0;
    bestF1 = 0;
    F1 = 0;
    
    stepsize = (max(pval) - min(pval)) / 1000;
    for epsilon = min(pval):stepsize:max(pval)
        
        % ====================== YOUR CODE HERE ======================
        % Instructions: Compute the F1 score of choosing epsilon as the
        %               threshold and place the value in F1. The code at the
        %               end of the loop will compare the F1 score for this
        %               choice of epsilon and set it to be the best epsilon if
        %               it is better than the current choice of epsilon.
        %               
        % Note: You can use predictions = (pval < epsilon) to get a binary vector
        %       of 0's and 1's of the outlier predictions
    
    
    
    cvp = pval<epsilon;%异常情况
    truepositive = sum((cvp==1)&(yval==1));
    falsepositive = sum((cvp==1)&(yval==0));
    truenegative = sum((cvp==0)&(yval==0));
    falsenegative =sum((cvp==0)&(yval==1));
    prec = truepositive/(truepositive+falsepositive);
    rec = truepositive/(truepositive+falsenegative);
    F1=2*prec*rec/(prec+rec);
    
        % =============================================================
    
        if F1 > bestF1
           bestF1 = F1;
           bestEpsilon = epsilon;
        end
    end
    
    end
    function [J, grad] = cofiCostFunc(params, Y, R, num_users, num_movies, ...
                                      num_features, lambda)
    %COFICOSTFUNC Collaborative filtering cost function
    %   [J, grad] = COFICOSTFUNC(params, Y, R, num_users, num_movies, ...
    %   num_features, lambda) returns the cost and gradient for the
    %   collaborative filtering problem.
    %
    
    % Unfold the U and W matrices from params
    X = reshape(params(1:num_movies*num_features), num_movies, num_features);
    Theta = reshape(params(num_movies*num_features+1:end), ...
                    num_users, num_features);
    
                
    % You need to return the following values correctly
    J = 0;
    X_grad = zeros(size(X));
    Theta_grad = zeros(size(Theta));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost function and gradient for collaborative
    %               filtering. Concretely, you should first implement the cost
    %               function (without regularization) and make sure it is
    %               matches our costs. After that, you should implement the 
    %               gradient and use the checkCostFunction routine to check
    %               that the gradient is correct. Finally, you should implement
    %               regularization.
    %
    % Notes: X - num_movies  x num_features matrix of movie features
    %        Theta - num_users  x num_features matrix of user features
    %        Y - num_movies x num_users matrix of user ratings of movies
    %        R - num_movies x num_users matrix, where R(i, j) = 1 if the 
    %            i-th movie was rated by the j-th user
    %
    % You should set the following variables correctly:
    %
    %        X_grad - num_movies x num_features matrix, containing the 
    %                 partial derivatives w.r.t. to each element of X
    %        Theta_grad - num_users x num_features matrix, containing the 
    %                     partial derivatives w.r.t. to each element of Theta
    %
    
    
    X_temp = (X*Theta')-Y;
    J_temp = (X_temp).^2;
    J = sum(J_temp(R==1)) /2;%代价函数
    
    X_grad = (X_temp.*R)*Theta +lambda*X;
    Theta_grad=(X_temp.*R)'*X +lambda*Theta;%正则化,(X_temp.*R)'要转置
    
    J=J+lambda/2*sum(sum(Theta.^2))+lambda/2*sum(sum(X.^2))%总的J
    % =============================================================
    
    grad = [X_grad(:); Theta_grad(:)];%向量化
    
    end
  • 相关阅读:
    bzoj 4012: [HNOI2015]开店
    POJ 1054 The Troublesome Frog
    POJ 3171 Cleaning Shifts
    POJ 3411 Paid Roads
    POJ 3045 Cow Acrobats
    POJ 1742 Coins
    POJ 3181 Dollar Dayz
    POJ 3040 Allowance
    POJ 3666 Making the Grade
    洛谷 P3657 [USACO17FEB]Why Did the Cow Cross the Road II P
  • 原文地址:https://www.cnblogs.com/tingtin/p/12240628.html
Copyright © 2011-2022 走看看