zoukankan      html  css  js  c++  java
  • tf.train.Saver()模型保存与恢复

    1.保存

    将训练好的模型参数保存起来,以便以后进行验证或测试。tf里面提供模型保存的是tf.train.Saver()模块。

    模型保存,先要创建一个Saver对象:如

    saver=tf.train.Saver()

    在创建这个Saver对象的时候,有一个参数经常会用到,max_to_keep 参数,这个是用来设置保存模型的个数,默认为5,即 max_to_keep=5,保存最近的5个模型。如果想每训练一代(epoch)就想保存一次模型,则可以将 max_to_keep设置为None或者0,但是这样做除了多占用硬盘,并没有实际多大的用处,因此不推荐,如:

    saver=tf.train.Saver(max_to_keep=0)

    当然,如果你只想保存最后一代的模型,则只需要将max_to_keep设置为1即可,即

    saver=tf.train.Saver(max_to_keep=1)

    创建完saver对象后,就可以保存训练好的模型了,如:

    saver.save(sess,‘ckpt/mnist.ckpt',global_step=step)

    第二个参数设定保存的路径和名字,第三个参数将训练的次数作为后缀加入到模型名字中

    saver.save(sess, 'my-model', global_step=0) ==>      filename: 'my-model-0'
    ...
    saver.save(sess, 'my-model', global_step=1000) ==> filename: 'my-model-1000'

    a = tf.Variable(1., tf.float32)
    b = tf.Variable(2., tf.float32)
    num = 10
    
    model_save_path = './mod/'
    model_name = 'mod'
    
    saver = tf.train.Saver()
    
    # with tf.Session() as sess:
    #     init_op = tf.global_variables_initializer()
    #     sess.run(init_op)
    #     for step in np.arange(num):
    #         c = sess.run(tf.add(a, b))
    #         # checkpoint_path = os.path.join(model_save_path, model_name)
    #         # 默认最多同时存放 5 个模型
    #         saver.save(sess, os.path.join(model_save_path, model_name), global_step=step)

    Tensorflow 会自动生成4个文件

    第一个文件为 model.ckpt.meta,保存了 Tensorflow 计算图的结构,可以简单理解为神经网络的网络结构。

    model.ckpt.index 和 model.ckpt.data-*****-of-***** 文件保存了所有变量的取值。

    最后一个文件为 checkpoint 文件,保存了一个目录下所有的模型文件列表。

    with tf.Session() as sess:
    ckpt=tf.train.get_checkpoint_state('mod/')
    print(ckpt)

    tf.train.get_checkpoint_state函数通过checkpoint文件找到模型文件名。

    tf.train.get_checkpoint_state(checkpoint_dir,latest_filename=None)
    该函数返回的是checkpoint文件CheckpointState proto类型的内容,其中有model_checkpoint_path和all_model_checkpoint_paths两个属性。其中model_checkpoint_path保存了最新的tensorflow模型文件的文件名,all_model_checkpoint_paths则有未被删除的所有tensorflow模型文件的文件名。


    model_checkpoint_path: "mod/mod-9"
    all_model_checkpoint_paths: "mod/mod-5"
    all_model_checkpoint_paths: "mod/mod-6"
    all_model_checkpoint_paths: "mod/mod-7"
    all_model_checkpoint_paths: "mod/mod-8"
    all_model_checkpoint_paths: "mod/mod-9"

    # 载入模型,不需要提供模型的名字,会通过 checkpoint 文件定位到最新保存的模型
    if ckpt and ckpt.model_checkpoint_path:
    saver.restore(sess, ckpt.model_checkpoint_path)

  • 相关阅读:
    SQL学习日志
    程序员之路──如何学习C语言并精通C语言
    using用法
    c#中的接口与类的区别
    用c#来实现一种行列式的计算优化
    python 切换目录
    如何光盘自动运行html?
    nsis 安装脚本示例(转)
    python sys.path.append
    python 面向对象初认识
  • 原文地址:https://www.cnblogs.com/tingtin/p/12561539.html
Copyright © 2011-2022 走看看