zoukankan      html  css  js  c++  java
  • The 2018 ACM-ICPC Chinese Collegiate Programming Contest Moving On

    Firdaws and Fatinah are living in a country with nn cities, numbered from 11 to nn.Each city has a risk of kidnapping or robbery.

    Firdaws's home locates in the city uu, and Fatinah's home locates in the city vv.Now you are asked to find the shortest path from the city uu to the city vv that does not pass through any other city with the risk of kidnapping or robbery higher than ww, a threshold given by Firdaws.

    Input Format

    The input contains several test cases, and the first line is a positive integer TT indicating the number of test cases which is up to 5050.

    For each test case, the first line contains two integers n~(1le nle 200)n (1n200) which is the number of cities, and q~(1le qle 2 imes 10^4)q (1q2×104) which is the number of queries that will be given.The second line contains nn integers r_1, r_2, cdots, r_nr1,r2,,rn indicating the risk of kidnapping or robbery in the city 11 to nn respectively.Each of the following nnlines contains nn integers, the jj-th one in the ii-th line of which, denoted by d_{i,j}di,j, is the distance from the city ii to the city jj.

    Each of the following qq lines gives an independent query with three integers u, vu,v and ww, which are described as above.

    We guarantee that 1le r_i le 10^51ri105, 1le d_{i,j}le 10^5~(i eq j)1di,j105 (ij), d_{i,i}=0di,i=0 and d_{i,j}=d_{j,i}di,j=dj,i.Besides, each query satisfies 1le u,vle n1u,vn and 1le wle 10^51w105.

    Output Format

    For each test case, output a line containing Case #x: at first, where xx is the test case number starting from 11.Each of the following qq lines contains an integer indicating the length of the shortest path of the corresponding query.

    样例输入

    1
    3 6
    1 2 3
    0 1 3
    1 0 1
    3 1 0
    1 1 1
    1 2 1
    1 3 1
    1 1 2
    1 2 2
    1 3 2

    样例输出

    Case #1:
    0
    1
    3
    0
    1
    2

    题目来源

    The 2018 ACM-ICPC Chinese Collegiate Programming Contest

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <string>
     5 #include <algorithm>
     6 #include <utility>
     7 #include <vector>
     8 #include <map>
     9 #include <queue>
    10 #include <stack>
    11 #include <cstdlib>
    12 #include <cmath>
    13 typedef long long ll;
    14 #define lowbit(x) (x&(-x))
    15 #define ls l,m,rt<<1
    16 #define rs m+1,r,rt<<1|1
    17 using namespace std;
    18 #define pi acos(-1)
    19 const int N=250;
    20 const int inf=0x3f3f3f3f;
    21 int r[N],f[N][N][N];
    22 int  t,n,q;
    23 int id[N];
    24 void solve(int n){
    25     for(int k=1;k<=n;k++){
    26         int kk=id[k];//实际顺序
    27         for(int i=1;i<=n;i++){
    28             for(int j=1;j<=n;j++){
    29                 f[k][i][j]=min(f[k-1][i][j],f[k-1][i][kk]+f[k-1][kk][j]);
    30             }
    31         }
    32     }
    33 }
    34 bool cmp(int i,int j){
    35     return  r[i]<r[j];
    36 }
    37 int main()
    38 {
    39     scanf("%d",&t);
    40     int i;
    41     for(i=1;i<=t;i++){
    42         scanf("%d%d",&n,&q);
    43         for(int j=1;j<=n;j++){
    44             id[j]=j;
    45             scanf("%d",&r[j]);
    46         }
    47         memset(f,inf,sizeof(f));
    48         for(int k1=1;k1<=n;k1++){
    49             for(int k2=1;k2<=n;k2++){
    50                 scanf("%d",&f[0][k1][k2]);
    51             }
    52         }
    53         sort(id+1,id+n+1,cmp);//按照r[]从小到大排序,为了solve()
    54         sort(r+1,r+n+1);//为了找符合条件的k4
    55         solve(n);
    56         printf("Case #%d:
    ",i);
    57         int u,v,w;
    58          for(int k3=1;k3<=q;k3++){
    59              scanf("%d%d%d",&u,&v,&w);
    60              int k4;
    61              for(k4=1;k4<=n;k4++){
    62                  if(r[k4]>w){
    63                      break;
    64                  }
    65              }
    66              printf("%d
    ",f[k4-1][u][v]);         
    67          }
    68     }
    69     return  0;
    70 }
  • 相关阅读:
    51Nod 1239 欧拉函数之和
    51Nod 1244 莫比乌斯函数之和
    BZOJ 4805: 欧拉函数求和
    BZOJ 3944: Sum
    3.25阅读摘抄
    生活整洁之道
    1064. 朋友数(20)
    1063. 计算谱半径(20)
    1061. 判断题(15)
    1062. 最简分数(20)
  • 原文地址:https://www.cnblogs.com/tingtin/p/9334540.html
Copyright © 2011-2022 走看看