zoukankan      html  css  js  c++  java
  • Persona5

    •  65536K
     

    Persona5 is a famous video game.

    In the game, you are going to build relationship with your friends.

    You have NN friends and each friends have his upper bound of relationship with you. Let's consider the i^{th}ith friend has the upper bound U_iUi. At the beginning, the relationship with others are zero. In the game, each day you can select one person and increase the relationship with him by one. Notice that you can't select the person whose relationship with you has already reach its upper bound. If your relationship with others all reach the upper bound, the game ends.

    It's obvious that the game will end at a fixed day regardless your everyday choices. Please calculate how many kinds of ways to end the game. Two ways are said to be different if and only if there exists one day you select the different friend in the two ways.

    As the answer may be very large, you should output the answer mod 10000000071000000007

    Input Format

    The input file contains several test cases, each of them as described below.

    • The first line of the input contains one integers N(1 le N le 1000000)(1N1000000), giving the number of friends you have.
    • The second line contains NN integers. The i^{th}ith integer represents U_iUi ( 1 le U_i le 1000000)(1Ui1000000), which means the upper bound with i^{th}ith friend. It's guarantee that the sum of U_iUi is no more than 10000001000000.

    There are no more than 1010 test cases.

    Output Format

    One line per case, an integer indicates the answer mod 10000000071000000007.

    样例输入

    3
    1 1 1
    3
    1 2 3

    样例输出

    6
    60

    题目来源

    The 2018 ACM-ICPC China JiangSu Provincial Programming Contest

    一个人一个人的安排,组合数问题
    如 : 1 2 3
    C(63)* C(32)=60
     1 #include <iostream>
     2 #include <algorithm>
     3 #include <cstring>
     4 #include <cstdio>
     5 #include <vector>
     6 #include <queue>
     7 #include <stack>
     8 #include <cstdlib>
     9 #include <iomanip>
    10 #include <cmath>
    11 #include <cassert>
    12 #include <ctime>
    13 #include <map>
    14 #include <set>
    15 using namespace std;
    16 typedef long long ll;
    17 const ll mod=1e9+7;
    18 int n;
    19 const int N=1e6+9;
    20 ll  a[N],sum[N],f[N];
    21 ll mul1(ll a,ll b){
    22     a%=mod;b%=mod;
    23     return a*b%mod;
    24 }
    25 ll mul2(ll a,ll b ,ll c){
    26     a%=mod;b%=mod;c%=mod;
    27     return a*b%mod*c%mod;
    28 }
    29 void  egcd(ll a,ll b,ll &x,ll&y){
    30     ll d=a;
    31     if(!b){
    32         x=1;y=0;
    33         return ;
    34     }
    35     else{
    36         egcd(b,a%b,y,x);
    37         y-=(a/b)*x;
    38     }
    39 //    return d;
    40 }
    41 ll inv(ll n){
    42     ll x,y;
    43     egcd(n,mod,x,y);
    44     return (x%mod+mod)%mod;
    45 }
    46 void init()
    47 {
    48     f[0]=1;
    49     for(int i=1;i<=1000000;i++){
    50         f[i]=(f[i-1]*i)%mod;
    51     }
    52 }
    53 int main()
    54 {   init();
    55     while(~scanf("%d",&n)){
    56         memset(sum,0,sizeof(sum));
    57     for(int i=1;i<=n;i++){
    58         scanf("%lld",&a[i]);
    59         sum[i]=sum[i-1]+a[i];
    60     }
    61     ll ans=1;
    62 for(int i=n;i>1;i--){
    63     //ans=(ans*f[sum[i]]%mod*inv(f[a[i]])%mod*inv[f[sum[i-1]]%mod)%mod;
    64     ans=(ans*mul2(f[sum[i]],inv(f[a[i]]),inv(f[sum[i-1]])))%mod;
    65 }
    66 printf("%lld
    ",ans);
    67     }
    68     return 0;
    69     }
  • 相关阅读:
    angularJS中的MVC思想?
    angularJs初体验,实现双向数据绑定!使用体会:比较爽
    原生JS去解析地址栏的链接?超好用的解决办法
    HDCMS多图字段的使用?
    sublime添加到鼠标右键打开文件的方法?
    Ajax做列表无限加载和Ajax做二级下拉选项
    Atitit.获取某个服务 网络邻居列表 解决方案
    Atitit. 注册表操作查询 修改 api与工具总结 java c# php js python 病毒木马的原理
    Atitit. 注册表操作查询 修改 api与工具总结 java c# php js python 病毒木马的原理
    Atitit.prototype-base class-based  基于“类” vs 基于“原型”
  • 原文地址:https://www.cnblogs.com/tingtin/p/9363398.html
Copyright © 2011-2022 走看看