zoukankan      html  css  js  c++  java
  • poj 3783

    Balls
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 1196   Accepted: 783

    Description

    The classic Two Glass Balls brain-teaser is often posed as: 

    "Given two identical glass spheres, you would like to determine the lowest floor in a 100-story building from which they will break when dropped. Assume the spheres are undamaged when dropped below this point. What is the strategy that will minimize the worst-case scenario for number of drops?"


    Suppose that we had only one ball. We'd have to drop from each floor from 1 to 100 in sequence, requiring 100 drops in the worst case. 

    Now consider the case where we have two balls. Suppose we drop the first ball from floor n. If it breaks we're in the case where we have one ball remaining and we need to drop from floors 1 to n-1 in sequence, yielding n drops in the worst case (the first ball is dropped once, the second at most n-1 times). However, if it does not break when dropped from floor n, we have reduced the problem to dropping from floors n+1 to 100. In either case we must keep in mind that we've already used one drop. So the minimum number of drops, in the worst case, is the minimum over all n. 

    You will write a program to determine the minimum number of drops required, in the worst case, given B balls and an M-story building.

    Input

    The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. Each data set consists of a single line containing three(3) decimal integer values: the problem number, followed by a space, followed by the number of balls B, (1 ≤ B ≤ 50), followed by a space and the number of floors in the building M, (1 ≤ M ≤ 1000).

    Output

    For each data set, generate one line of output with the following values: The data set number as a decimal integer, a space, and the minimum number of drops needed for the corresponding values of B and M.

    Sample Input

    4 
    1 2 10 
    2 2 100 
    3 2 300 
    4 25 900

    Sample Output

    1 4
    2 14
    3 24
    4 10

    Source

     
     
    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cstdlib>
    #include <cstring>
    #include <string>
    #include <deque>
    using namespace std;
    #define ll long long     
    #define  N 1000009
    #define  gep(i,a,b)  for(int  i=a;i<=b;i++)
    #define  gepp(i,a,b) for(int  i=a;i>=b;i--)
    #define  gep1(i,a,b)  for(ll i=a;i<=b;i++)
    #define  gepp1(i,a,b) for(ll i=a;i>=b;i--)    
    #define  mem(a,b)  memset(a,b,sizeof(a))
    #define  mod  1000000007
    #define  lowbit(x)  x&(-x)
    #define  inf 100000
    int t,a,b,m;
    int dp[1009][60];
    /*
    dp[i][j]:i层楼,J个球在最坏的情况下需要的次数
    枚举前面的k : 1 ~ i
    没碎  dp[i][j]=dp[i-k][j]+1//还有i-k层楼,下面的楼肯定不需要了,还有j个球
    碎了 dp[i][j]=dp[k-1][j-1]+1//往下k-1层,上面的楼肯定不用查了,还有j-1个球
    dp[i][j]=min(dp[i][j],max(dp[i-k][j],dp[k-1][j-1])+1);//+1因为 k 层楼需要一次
    */
    void init(){
        gep(i,0,1001){
            gep(j,0,51){
                dp[i][j]=inf;
            }
        }
        gep(i,0,51) dp[0][i]=0;
        //从1开始
        gep(i,1,1001){
            gep(j,1,51){
                gep(k,1,i){
                    dp[i][j]=min(dp[i][j],max(dp[i-k][j],dp[k-1][j-1])+1);
                }
            }
        }
    }
    int main()
    {
         init();
        scanf("%d",&t);
        while(t--){
            scanf("%d%d%d",&a,&b,&m);
            printf("%d %d
    ",a,dp[m][b]);
        }
        return 0;
    }
  • 相关阅读:
    类的无参方法
    类和对象的案例
    类和对象的实例
    类和对象
    【Java】【1】String数组和List相互转换
    【Oracle】【5】去掉字符串最后一个特殊字符
    【其他】【Restful】【1】简单了解Restful概念
    【IDEA】【7】Git更新及提交
    【IDEA】【6】Maven打包
    【IDEA】【5】快捷键
  • 原文地址:https://www.cnblogs.com/tingtin/p/9485924.html
Copyright © 2011-2022 走看看