zoukankan      html  css  js  c++  java
  • Programming Assignment 4: 8 Puzzle

    The Problem. 求解8数码问题。用最少的移动次数能使8数码还原.

    1

     

    Best-first search.使用A*算法来解决,我们定义一个Seach Node,它是当前搜索局面的一种状态,记录了从初始到达当前状态的移动次数和上一个状态。初始化时候,当前状态移动次数为0,上一个状态为null,将其放入优先级队列,通过不断的从优先级队列中取出Seach Node去扩展下一级的状态,直到找到目标状态。对于优先级队列中优先级的定义我们可以采用:Hamming priority function 和 Manhattan priority function,第一个表示有多少个块不在目标位置,第二个表示每一个块到他所在目标位置曼哈顿距离之和。

    对于解决8数码来说,为了寻求最少步数,那么当前状态移动步数优先级需要考虑,同时选择Hamming或者Manhattan进行启发式的搜索。当目标状态出现时,我们就是使用了最少的步数。怎么证明?

     

    A critical optimization.在搜索的过程中会遇到重复出现的状态,所以我们在进行下一个状态搜索的时候,判断不要将它相邻已经出现的状态加入到优先级队列中。

    1

     

    Game Tree. 搜索是一个博弈树的形式展开,每一个节点对应一个状态,树根是初始状态,在每一步中,A*算法删除优先级对联中priority最小的那个节点,然后进行处理

    1

    Detecting infeasible puzzles. 有些初始状态是无法通过移动来得到目标状态的,比如:

    1

    但是我们通过交换任意行不为空白的相邻的两个,如果按照这个初始状态来进行搜索,我们就可以得到目标状态。对于可行性的判断,可以根据初始状态和目标状态逆序数的奇偶性来进行判断,在进行移动后,应该奇偶性保持一致。但在这次Assignment中,不要求这么做,而是通过加入两个初始节点,一个是原有的,一个是进行相邻交换一次的,同时进行A*的搜索,如果原有的找到了目标解,那么就是可行,否则另一个找到了可行解,原有的就是不可行状态。

    同一个初始状态到目标状态的最小移动次数是存在多解。其他还有IDA*,双向BFS等解法。

    一些优化的地方,使用char[][] 比int[][]的空间更小。在进行曼哈顿距离求解的时候,我们可以用空间换时间,预存每个数字的曼哈顿距离,然后直接返回。

    8数码是一个NP-Hard问题,没有有效的解存在。

    完整的代码如下:

    Board.java

    public class Board {
        private int[][] matrix; // blocks
        private int N; // deimension
        private int posX, posY; // 0' position 
        
        // construct a board from an N-by-N array of blocks
        // (where blocks[i][j] = block in row i, column j)
        public Board(int[][] blocks) {
            N = blocks.length;
            matrix = new int[N][N];
            for (int i = 0; i < N; i++) {
                for (int j = 0; j < N; j++) {
                    matrix[i][j] = blocks[i][j];
                    if (matrix[i][j] == 0) {
                        posX = i;
                        posY = j;
                    }
                }
            }
        }
        
        // board dimension N
        public int dimension() {
            return N;
        } 
            
        // number of blocks out of place
        public int hamming() {
            int hammingDis = 0;
            for (int i = 0; i < N; i++) {
                for (int j = 0; j < N; j++) {
                    if (matrix[i][j] == 0) continue;
                    if (i*N+j+1 != matrix[i][j]) hammingDis++;
                }
            }
            return hammingDis;
        }    
            
        // sum of Manhattan distances between blocks and goal
        public int manhattan() {
            int manhattanDis = 0;
            for (int i = 0; i < N; i++) {
                for (int j = 0; j < N; j++) {
                    if (matrix[i][j] == 0) continue;
                    int x, y;
                    if (matrix[i][j] % N == 0) {
                        x = matrix[i][j] / N - 1;
                        y = N - 1;
                    } else {
                        x = matrix[i][j] / N;
                        y = matrix[i][j] % N - 1;
                    }
                    manhattanDis += Math.abs(i-x) + Math.abs(j-y);
                }
            }
            return manhattanDis;
        } 
                
        // is this board the goal board?
        public boolean isGoal() {
            if (posX != N-1 || posY != N-1) return false;
            for (int i = 0; i < N; i++) {
                for (int j = 0; j < N; j++) {
                    if (matrix[i][j] == 0) continue;
                    if (i*N+j+1 != matrix[i][j]) return false;
                }
            }
            return true;
        }               
                
        // a board obtained by exchanging two adjacent blocks in the same row
        public Board twin() {
            int x = -1, y = -1;
            int[][] tmpBlock = new int[N][N];
            for (int i = 0; i < N; i++) {
                for (int j = 0; j < N; j++) {
                    if (j < N-1 && matrix[i][j] != 0 && matrix[i][j+1] != 0) {
                        x = i;
                        y = j;
                    }
                    tmpBlock[i][j] = matrix[i][j];
                }
            }
            if (x == -1 && y == -1) throw new IllegalArgumentException();
            int t = tmpBlock[x][y];
            tmpBlock[x][y] = tmpBlock[x][y+1];
            tmpBlock[x][y+1] = t;
            return new Board(tmpBlock);
        }           
            
        // does this board equal y?
        public boolean equals(Object y) {
            if (y == this) return true;
            if (y == null) return false;
            if (y.getClass() != this.getClass()) return false;
            Board that = (Board) y;
            if (this.dimension() != that.dimension()) return false;
            int sz = this.dimension();
            for (int i = 0; i < sz; i++) {
                for (int j = 0; j < sz; j++) {
                    if (this.matrix[i][j] != that.matrix[i][j])
                        return false;
                }
            }
            return true;
        }  
            
        // all neighboring boards
        public Iterable<Board> neighbors() {
            Queue<Board> queue = new Queue<Board>();
            int[] dx = {0, 0, -1, 1};
            int[] dy = {1, -1, 0, 0};
            for (int i = 0; i < 4; i++) {
                int x = posX + dx[i];
                int y = posY + dy[i];
                
                if (x < N && x >= 0 && y < N && y >= 0) {
                    int tmp = matrix[posX][posY];
                    matrix[posX][posY] = matrix[x][y];
                    matrix[x][y] = tmp;
                    queue.enqueue(new Board(matrix));
                    tmp = matrix[posX][posY];
                    matrix[posX][posY] = matrix[x][y];
                    matrix[x][y] = tmp;
                }
            }
            return queue;
        }
        
        // string representation of the board (in the output format specified below)
        public String toString() {
            StringBuilder s = new StringBuilder();
            s.append(N + "
    ");
            for (int i = 0; i < N; i++) {
                for (int j = 0; j < N; j++) {
                    s.append(String.format("%2d ", matrix[i][j]));
                }
                s.append("
    ");
            }
            return s.toString();
        } 
       
        public static void main(String[] args) {
            int[][] mat = {
                {1, 2, 3},
                {4, 6, 0},
                {7, 8, 5}
            };
            //hamming
            //manhattan
            Board b = new Board(mat);
            Board c = b.twin().twin();
            StdOut.println(b.equals(c));
            StdOut.print(b.toString());
            for (Board it : b.neighbors()) {
                StdOut.print(it.toString());
                StdOut.println("hamming: " + it.hamming());
                StdOut.println("manhattan: " + it.manhattan());
            }
        }
        
    }

    Solver.java

    public class Solver {
        
        private BoardNode targetBoardNode; // record targetBoardNode
        
        private class BoardNode implements Comparable<BoardNode> {
            private Board item;
            private BoardNode prev;
            private int move;
            private boolean isTwin;
            
            // compare by priority
            public int compareTo(BoardNode that) {
                if (that == null) 
                    throw new NullPointerException("Input argument is null");
                int thisPriority = this.move + this.item.manhattan();
                int thatPriority = that.move + that.item.manhattan();
                if (thisPriority < thatPriority)
                    return -1;
                else if (thisPriority == thatPriority)
                    return 0;
                else
                    return 1;
            }
        }
        
        
        // find a solution to the initial board (using the A* algorithm)
        public Solver(Board initial) {
            targetBoardNode = null;
            // priority queue maintain the minimum elements 
            MinPQ<BoardNode> minpq = new MinPQ<BoardNode>();
            // initial boardnode
            BoardNode bn = new BoardNode();
            bn.item = initial;
            bn.prev = null;
            bn.move = 0;
            bn.isTwin = false;
            minpq.insert(bn);
            // initial twin boardnode
            BoardNode twinbn = new BoardNode();
            twinbn.item = initial.twin();
            twinbn.prev = null;
            twinbn.move = 0;
            twinbn.isTwin = true;
            minpq.insert(twinbn);
            
            while (!minpq.isEmpty()) {
                BoardNode curbn = minpq.delMin();
                if (curbn.item.isGoal()) {
                    if (curbn.isTwin) targetBoardNode = null;
                    else targetBoardNode = curbn;
                    break;
                }
                
                for (Board it : curbn.item.neighbors()) {
                    if (curbn.prev == null || !curbn.prev.item.equals(it)) {
                        bn = new BoardNode();
                        bn.item = it;
                        bn.prev = curbn;
                        bn.move = curbn.move+1;
                        if (curbn.isTwin)
                            bn.isTwin = true;
                        else
                            bn.isTwin = false;
                        minpq.insert(bn);
                    }
                }
            }
        }
        
        // is the initial board solvable?
        public boolean isSolvable() {
            return targetBoardNode != null;
        }       
        
        // min number of moves to solve initial board; -1 if no solution
        public int moves() {
            if (isSolvable())
                return targetBoardNode.move;
            else 
                return -1;
        }
        
        // sequence of boards in a shortest solution; null if no solution
        public Iterable<Board> solution() {
            Stack<Board> stack = new Stack<Board>();
            BoardNode tmpbn = targetBoardNode;
            while (tmpbn != null) {
                stack.push(tmpbn.item);
                tmpbn = tmpbn.prev;
            }
            if (stack.isEmpty()) 
                return null;
            else 
                return stack;
        }      
        
        // solve a slider puzzle (given below)
        public static void main(String[] args) {
            // create initial board from file
            In in = new In(args[0]);
            int N = in.readInt();
            int[][] blocks = new int[N][N];
            for (int i = 0; i < N; i++)
                for (int j = 0; j < N; j++)
                blocks[i][j] = in.readInt();
            Board initial = new Board(blocks);
            
            // solve the puzzle
            Solver solver = new Solver(initial);
            
            // print solution to standard output
            if (!solver.isSolvable())
                StdOut.println("No solution possible");
            else {
                StdOut.println("Minimum number of moves = " + solver.moves());
                for (Board board : solver.solution())
                    StdOut.println(board);
            }
        }
    }
  • 相关阅读:
    window上安装zabbix agent使用案例
    zabbix通过shell脚本安装异常问题定位
    linux脚本实现scp命令自动输入密码和yes/no等确认信息
    需求:lr需要在一串数字中随机位置插入一个新数字的实现方式
    python写csv文件
    python产生随机名字
    python生成随机日期字符串
    centos6.5上安装redis3.2.1遇见的坑
    python辅助sql手工注入猜解数据库案例分析
    XXE (XML External Entity Injection) 外部实体注入漏洞案例分析
  • 原文地址:https://www.cnblogs.com/tiny656/p/3835910.html
Copyright © 2011-2022 走看看