zoukankan      html  css  js  c++  java
  • Solution of CF911G Mass Change Queries

    Summary of the question:

    You are given an array (a) consisting of (n) integers. You have to process (q) queries to this array; each query is given as four numbers (l,r,x) and (y), denoting that for every (i) such that (l<=i<=r) and (a_i=x) you have to set (a_i) equal to (y).

    Print the array after all queries are processed

    Input

    The first line contains one integer (n(1<=n<=200000))-the size of array (a).

    The second line contains (n) integers (a_1,a_2,...,a_n(1<=a_i<=100)) - the elements of array (a).

    The third line contains one integer (q(1<=q<=200000)) - the number of queries you have to process.

    Then (q) lines follow. (i) -th line contains four integers (l,r,x) and (y) denoting (i) -th query ((1<=l<=r<=n,1<=x,y<=100))

    Output

    print (n) integers - elements of array (a) after all changes are made

    Solution

    It is obvious we could use segment tree to solve this question, but the problem is that what do we do with the 100 kinds of elements.

    The good thing is that there were only 100 kinds of elements, so we were able to record all the information about the operation on the nodes of the segment tree. All we have to do is open a hundred space to record the number.

    When we need to modify the number, it will be ok for us to do a for loop to ergodic all the points on that knot.

    Although it can AC the question, but it took you about 1s to pass the final data.

    There were some different solution that I didn't use in my coding. We could use the technique of blocking. Also we could use Dynamic open point segment tree.

    Calculation about time and space

    space:(O(200000*100*4))

    time:(O(n*log n*100))

    Here's my coding

    #include<bits/stdc++.h>
    #define N 200005
    using namespace std;
    struct node{
    	int sum[101];
    }tree[N*4];
    int a[N],n,m,x,y,l,r;
    inline void pushdown(int p){
    	for (int i=1;i<101;i++){
    		tree[p<<1].sum[i]=tree[p].sum[tree[p<<1].sum[i]];
    		tree[p<<1|1].sum[i]=tree[p].sum[tree[p<<1|1].sum[i]];
    	}
    	for (int i=1;i<101;i++)
    		tree[p].sum[i]=i;
    }
    void build(int p,int l,int r){
    	for (int i=1;i<101;i++)
    		tree[p].sum[i]=i;
    	if (l==r) return;
    	int mid=(l+r) >> 1;
    	build(p<<1,l,mid);
    	build(p<<1|1,mid+1,r); 
    }
    void modify(int p,int l,int r,int x,int y,int from,int to){
    	if (l>=x&&r<=y){
    		for (int i=1;i<101;i++)
    			if (tree[p].sum[i]==from)
    				tree[p].sum[i]=to;
    		return;
    	}
    	int mid=(l+r) >> 1;
    	pushdown(p);
    	if (x<=mid) modify(p<<1,l,mid,x,y,from,to);
    	if (y>mid) modify(p<<1|1,mid+1,r,x,y,from,to); 
    }
    void query(int p,int l,int r){
    	if (l==r){
    		printf("%d ",tree[p].sum[a[l]]);
    		return;
    	}
    	pushdown(p);
    	int mid=(l+r)>> 1;
    	query(p<<1,l,mid);
    	query(p<<1|1,mid+1,r);
    }
    int main(){
    	scanf("%d",&n);
    	for (int i=1;i<=n;i++)
    		scanf("%d",&a[i]);
    	build(1,1,n);
    	scanf("%d",&m);
    	for (int i=1;i<=m;i++){
    		scanf("%d%d%d%d",&l,&r,&x,&y);
    		modify(1,1,n,l,r,x,y);
    	} 
    	query(1,1,n);
    	return 0;
    }
    
  • 相关阅读:
    bootstrap学习笔记一: bootstrap初认识,hello bootstrap(下)
    bootstrap学习笔记一: bootstrap初认识,hello bootstrap(上)
    AutoCompleteTextView的使用
    常用的android弹出对话框
    PopupWindow的使用
    linux udev、mdev 介绍
    linux 守护进程编程
    linux 下的文件目录操作之遍历目录
    linux 下查找图片文件方法
    linux 内核 zImage 生成过程分析
  • 原文地址:https://www.cnblogs.com/titititing/p/13647768.html
Copyright © 2011-2022 走看看