zoukankan      html  css  js  c++  java
  • hdu 3549 Flow Problem

    Flow Problem

    Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 7250    Accepted Submission(s): 3364


    Problem Description
    Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
     

    Input
    The first line of input contains an integer T, denoting the number of test cases.
    For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
    Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
     

    Output
    For each test cases, you should output the maximum flow from source 1 to sink N.
     

    Sample Input
    2 3 2 1 2 1 2 3 1 3 3 1 2 1 2 3 1 1 3 1
     

    Sample Output
    Case 1: 1 Case 2: 2
     

    题意:n个节点,m条路径。当中给出每条路径的容量。

    求1到n的最大流

    <span style="font-size:24px;">#include<stdio.h>
    #include<algorithm>
    #include<queue>
    #define INF 1000
    #define min(x,y) (x<y?x:y)
    using namespace std;
    int cap[20][20],flow[20][20],a[1000],p[100];
    int n,m,f,s,t;
    
    void Edmonds_Karp()
    {
    	queue<int> q;
    	memset(flow,0,sizeof(flow));
    	f=0;
    	s=1;
    	t=n;
    	while(1)
    	{
    		memset(a,0,sizeof(a));
    		a[s]=INF;
    		q.push(s); 
    		while(!q.empty())
    		{
    			int u=q.front();
    			q.pop();
    			for(int v=1;v<=n;v++)
    			{
    				if(!a[v]&&cap[u][v]>flow[u][v])
    				{
    					p[v]=u;
    					q.push(v);
    					a[v]=min(a[u],cap[u][v]-flow[u][v]);
    				}
    			}
    		}
    		if(a[t]==0) break;	
    		for(int u=t;u!=s;u=p[u])
    		{
    			flow[p[u]][u]+=a[t];
    			flow[u][p[u]]-=a[t];
    		}
    		f+=a[t];
    	}
    }
    
    int main()
    {
    	int t,k=1;
    	scanf("%d",&t);
    	while(t--)
    	{
    		scanf("%d %d",&n,&m);
    		memset(cap,0,sizeof(cap));
    		for(int i=0;i<m;i++)
    		{
    			int x,y,c;
    			scanf("%d %d %d",&x,&y,&c);
    			cap[x][y]+=c;
    		}
    		Edmonds_Karp();
    		printf("Case %d: %d
    ",k++,f);
    	}
    	return 0;
    }</span>


     

  • 相关阅读:
    李航统计学习方法(第二版)(六):k 近邻算法实现(kd树(kd tree)方法)
    ActiveMQ的安装和启动
    HTML select autofocus 属性
    macpath (File & Directory Access) – Python 中文开发手册
    Java Bitset类
    Linux zip命令
    HTML DOM Keygen 对象
    tanh (Numerics) – C 中文开发手册
    no-shadow (Rules) – Eslint 中文开发手册
    require-await (Rules) – Eslint 中文开发手册
  • 原文地址:https://www.cnblogs.com/tlnshuju/p/6945677.html
Copyright © 2011-2022 走看看