zoukankan      html  css  js  c++  java
  • hdu 3549 Flow Problem

    Flow Problem

    Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 7250    Accepted Submission(s): 3364


    Problem Description
    Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
     

    Input
    The first line of input contains an integer T, denoting the number of test cases.
    For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
    Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
     

    Output
    For each test cases, you should output the maximum flow from source 1 to sink N.
     

    Sample Input
    2 3 2 1 2 1 2 3 1 3 3 1 2 1 2 3 1 1 3 1
     

    Sample Output
    Case 1: 1 Case 2: 2
     

    题意:n个节点,m条路径。当中给出每条路径的容量。

    求1到n的最大流

    <span style="font-size:24px;">#include<stdio.h>
    #include<algorithm>
    #include<queue>
    #define INF 1000
    #define min(x,y) (x<y?x:y)
    using namespace std;
    int cap[20][20],flow[20][20],a[1000],p[100];
    int n,m,f,s,t;
    
    void Edmonds_Karp()
    {
    	queue<int> q;
    	memset(flow,0,sizeof(flow));
    	f=0;
    	s=1;
    	t=n;
    	while(1)
    	{
    		memset(a,0,sizeof(a));
    		a[s]=INF;
    		q.push(s); 
    		while(!q.empty())
    		{
    			int u=q.front();
    			q.pop();
    			for(int v=1;v<=n;v++)
    			{
    				if(!a[v]&&cap[u][v]>flow[u][v])
    				{
    					p[v]=u;
    					q.push(v);
    					a[v]=min(a[u],cap[u][v]-flow[u][v]);
    				}
    			}
    		}
    		if(a[t]==0) break;	
    		for(int u=t;u!=s;u=p[u])
    		{
    			flow[p[u]][u]+=a[t];
    			flow[u][p[u]]-=a[t];
    		}
    		f+=a[t];
    	}
    }
    
    int main()
    {
    	int t,k=1;
    	scanf("%d",&t);
    	while(t--)
    	{
    		scanf("%d %d",&n,&m);
    		memset(cap,0,sizeof(cap));
    		for(int i=0;i<m;i++)
    		{
    			int x,y,c;
    			scanf("%d %d %d",&x,&y,&c);
    			cap[x][y]+=c;
    		}
    		Edmonds_Karp();
    		printf("Case %d: %d
    ",k++,f);
    	}
    	return 0;
    }</span>


     

  • 相关阅读:
    机器学习之线性回归
    最长回文字串——manacher算法
    linux系统下pdf操作软件pdftk
    markdown表格
    3.9 标准化,让运营数据落入相同的范围
    3.numpy_array数组
    4. 归并排序和快速排序
    3.病毒分裂
    2. 大整数乘法
    1.单峰序列
  • 原文地址:https://www.cnblogs.com/tlnshuju/p/6945677.html
Copyright © 2011-2022 走看看