zoukankan      html  css  js  c++  java
  • HDU 4259(Double Dealing-lcm(x1..xn)=lcm(x1,lcm(x2..xn))

    Double Dealing

    Time Limit: 50000/20000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1924    Accepted Submission(s): 679


    Problem Description
    Take a deck of n unique cards. Deal the entire deck out to k players in the usual way: the top card to player 1, the next to player 2, the kth to player k, the k+1st to player 1, and so on. Then pick up the cards – place player 1′s cards on top, then player 2, and so on, so that player k’s cards are on the bottom. Each player’s cards are in reverse order – the last card that they were dealt is on the top, and the first on the bottom.
    How many times, including the first, must this process be repeated before the deck is back in its original order?

     

    Input
    There will be multiple test cases in the input. Each case will consist of a single line with two integers, n and k (1≤n≤800, 1≤k≤800). The input will end with a line with two 0s.
     

    Output
    For each test case in the input, print a single integer, indicating the number of deals required to return the deck to its original order. Output each integer on its own line, with no extra spaces, and no blank lines between answers. All possible inputs yield answers which will fit in a signed 64-bit integer.
     

    Sample Input
    1 3 10 3 52 4 0 0
     

    Sample Output
    1 4 13
     

    Source
     

    Recommend
    liuyiding   |   We have carefully selected several similar problems for you:  4257 4258 4260 4261 4262 
     

    求置换群循环节的lcm

    注意lcm(x1..xn)=lcm(x1,lcm(x2..xn)!=x1*..*xn/gcd


    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<algorithm>
    #include<functional>
    #include<iostream>
    #include<cmath>
    #include<cctype>
    #include<ctime>
    using namespace std;
    #define For(i,n) for(int i=1;i<=n;i++)
    #define Fork(i,k,n) for(int i=k;i<=n;i++)
    #define Rep(i,n) for(int i=0;i<n;i++)
    #define ForD(i,n) for(int i=n;i;i--)
    #define RepD(i,n) for(int i=n;i>=0;i--)
    #define Forp(x) for(int p=pre[x];p;p=next[p])
    #define Forpiter(x) for(int &p=iter[x];p;p=next[p])
    #define Lson (x<<1)
    #define Rson ((x<<1)+1)
    #define MEM(a) memset(a,0,sizeof(a));
    #define MEMI(a) memset(a,127,sizeof(a));
    #define MEMi(a) memset(a,128,sizeof(a));
    #define INF (2139062143)
    #define F (100000007)
    #define MAXN (1000000)
    typedef long long ll;
    ll mul(ll a,ll b){return (a*b)%F;}
    ll add(ll a,ll b){return (a+b)%F;}
    ll sub(ll a,ll b){return (a-b+(a-b)/F*F+F)%F;}
    void upd(ll &a,ll b){a=(a%F+b%F)%F;}
    char s[]="no solution
    ";
    
    class Math
    {
    public:
        ll gcd(ll a,ll b){if (!b) return a;return gcd(b,a%b);}
        ll abs(ll x){if (x>=0) return x;return -x;}
        ll exgcd(ll a,ll b,ll &x, ll &y)
        {
            if (!b) {x=1,y=0;return a;}
            ll g=exgcd(b,a%b,x,y);
            ll t=x;x=y;y=t-a/b*y;
            return g;
        }
        ll pow2(ll a,int b,ll p)
        {
            if (b==0) return 1;
            if (b==1) return a;
            ll c=pow2(a,b/2,p);
            c=c*c%p;
            if (b&1) c=c*a%p;
            return c;
        }
        ll Modp(ll a,ll b,ll p)
        {
            ll x,y;
            ll g=exgcd(a,p,x,y),d;
            if (b%g) {return -1;}
            d=b/g;x*=d,y*=d;
            x=(x+abs(x)/p*p+p)%p;
            return x;
        }
        int h[MAXN];
        ll hnum[MAXN];
        int hash(ll x)
        {
            int i=x%MAXN;
            while (h[i]&&hnum[i]!=x) i=(i+1)%MAXN;
            hnum[i]=x;
            return i;
        }
        ll babystep(ll a,ll b,int p)
        {
            MEM(h) MEM(hnum)
            int m=sqrt(p);while (m*m<p) m++;
            ll res=b,ans=-1;
    
            ll uni=pow2(a,m,p);
            if (!uni) if (!b) ans=1;else ans=-1; //特判
            else
            {
    
                Rep(i,m+1)
                {
                    int t=hash(res);
                    h[t]=i+1;
                    res=(res*a)%p;
                }
                res=uni;
    
                For(i,m+1)
                {
                    int t=hash(res);
                    if (h[t]) {ans=i*m-(h[t]-1);break;}else hnum[t]=0;
                    res=res*uni%p;
                }
    
            }
            return ans;
        }
    }S;
    
    int a[10000+10];
    bool b[10000+10];
    int p[10000+10];
    int main()
    {
    //    freopen("C.in","r",stdin);
    //    freopen(".out","w",stdout);
    
        int n,k;
        while(cin>>n>>k)
        {
            if (n+k==0) return 0;
            int s=0;
            For(j,k)
                for(int i=n/k*k+j>n?n/k*k+j-k:n/k*k+j;i>=1;i-=k) a[++s]=i;
    
        //    For(i,n) cout<<a[i]<<' ';
    
    
            int tot=0;
    
            MEM(b)
            For(i,n)
            {
                if (!b[i])
                {
                    int t=i; b[i]=1;
                    int len=1;
                    do {
                        b[t]=1;
                        t=a[t]; ++len;
                  //       cout<<t<<endl;
    
                    } while (!b[t]);
                    len--;
    
                    p[++tot]=len;
                }
            }
    
            sort(p+1,p+1+tot);
            tot=unique(p+1,p+1+tot)-(p+1);
    
    //        For(i,tot) cout<<p[i]<<' ';
    
            ll ans=1;
            For(i,tot) ans=ans/S.gcd(p[i],ans)*p[i];
    
    
            cout<<ans<<endl;
    
        }
    
    
        return 0;
    }
    




  • 相关阅读:
    在页面跳转的时候,在跳转后的页面中使用js 获取到 页面跳转的url中携带的参数。
    使用js处理后台返回的Date类型的数据
    java后端时间处理工具类,返回 "XXX 前" 的字符串
    前端分页神器,jquery grid的使用(前后端联调),让分页变得更简单。
    后端分页神器,mybatis pagehelper 在SSM与springboot项目中的使用
    使用SSM 或者 springboot +mybatis时,对数据库的认证信息(用户名,密码)进行加密。
    swagger2 常用注解的使用
    SSM项目 以及 springboot 中引入swagger2的方法
    jquery grid 获取选中的行的数据,以及获取所有行的方法
    关于使用ssm与spring时,配置tomcat 虚拟目录( doBase )中的一些坑
  • 原文地址:https://www.cnblogs.com/tlnshuju/p/7052452.html
Copyright © 2011-2022 走看看