zoukankan      html  css  js  c++  java
  • HDU 2601An easy problem-素数的运用,暴力求解

    Time Limit: 3000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u

     Status

    Description

    When Teddy was a child , he was always thinking about some simple math problems ,such as “What it’s 1 cup of water plus 1 pile of dough ..” , “100 yuan buy 100 pig” .etc.. 

    One day Teddy met a old man in his dream , in that dream the man whose name was“RuLai” gave Teddy a problem : 

    Given an N , can you calculate how many ways to write N as i * j + i + j (0 < i <= j) ? 

    Teddy found the answer when N was less than 10…but if N get bigger , he found it was too difficult for him to solve. 
    Well , you clever ACMers ,could you help little Teddy to solve this problem and let him have a good dream ? 
     

    Input

    The first line contain a T(T <= 2000) . followed by T lines ,each line contain an integer N (0<=N <= 10 10).
     

    Output

    For each case, output the number of ways in one line.
     

    Sample Input

    2 1 3
     

    Sample Output

    0 1
     对于 N as i * j + i + j (0 < i <= j) ?

     
    能够表示为N=i*j+i+j
    所以能够化作N+1=(i+1)*(j+1);
    如此就有两种思路去做,一暴力枚举,从这里能够看出来i<=sqrt(N+1);
    所以一个循环就能够解决,第一份代码就是。可是耗时才一点就过题目提供的3s了。怎么办,是否还有
    更好的解决方式呢,有的,N+1=(i+1)*(j+1)能够知道N+1是i+1以及j+1的倍数
    如此就能够转换成求解约数的个数(约数是什么,请读者自己百度了解)
    N+1=a1^p1*a2^p2*a3^p3....an^pn
    当中ai是代表着质数,这个的意思是不论什么大于1的数都能够转换为有限个质数因子的乘积
    如此。能够用排列组合来求。第一种有p1+1选择(能够选择0...p1)另外一种有p2+1选择(能够选择0...p2)....第n种有pn+1选择(能够选择0...pn)
    所以约数个数ans=(p1+1)*(p2+1)*(p3+1)*(p4+1)*....*(pn+1)(里面还有减去1和n由于他们不属于题目要求范围)
    当N+1是全然平方数的话,那么除了1以及N+1本身外,唯有最中间的约数是仅仅计算了一次,其它的数都反复的计算了两次,
    当N+1不是全然平方数的话,那么除了1以及N+1本身外,其它的数都反复的计算了两次
    所以能够分开推断输出,也能够直接转换输出就像代码中一样,(ans+1)/2-1,当为全然平方数时,我们须要加一除二才干使正确的结果
    至于减去一,就是前面的去掉1和n这两个不符合条件的数
    当为不全然平方数,ans/2-1就能够了,可是为了合成一个式子,(ans+1)/2-1,是能够取代ans/2-1的
    为什么,由于(4+1)/2==4/2,这是不会影响终于结果的。

    /*
    Author: 2486
    Memory: 1416 KB		Time: 2823 MS
    Language: G++		Result: Accepted
    */
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    typedef long long LL;
    const int maxn=1e5;
    int t;
    LL n;
    int main() {
        scanf("%d",&t);
        while(t--) {
            scanf("%I64d",&n);
            if(n==0||n==1) {
                printf("0
    ");
                continue;
            }
            int cnt=0;
            for(int i=1; i<=sqrt(n); i++) {
                if((n+1)%(i+1)==0&&(n+1)/(i+1)>=i+1)cnt++;
            }
            printf("%d
    ",cnt);
        }
    }

    /*
    Author: 2486
    Memory: 1592 KB		Time: 46 MS
    Language: G++		Result: Accepted
    */
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    typedef long long LL;
    const int maxn=100000+5;
    LL prime[maxn];
    bool vis[maxn];
    int T,cnt;
    LL N;
    void primes() { //初始化素数列表
        cnt=0;
        for(int i=2; i<maxn; i++) {
            if(vis[i])continue;
            prime[cnt++]=i;
            for(int j=i*2; j<maxn; j+=i) {
                vis[j]=true;
            }
        }
    }
    void solve(LL n) {
        LL ans=1;
        for(int i=0; prime[i]*prime[i]<=n; i++) {
            if(n%prime[i]==0) {
                int s=0;
                while(n%prime[i]==0)n/=prime[i],s++;
                ans*=(s+1);
            }
            if(n==1)break;
        }
        if(n>1)ans*=2;
        printf("%I64d
    ",(ans+1)/2-1);
    }
    int main() {
        primes();
        scanf("%d",&T);
        while(T--) {
            scanf("%I64d",&N);
            N++;
            solve(N);
        }
        return 0;
    }
    


  • 相关阅读:
    UVA11082 矩阵展开,最大流
    UVA11082 矩阵展开,最大流
    hdu5855二分+最大流
    hdu5855二分+最大流
    高斯消元 hdu5833,hdu3364,hihocoder1195
    高斯消元 hdu5833,hdu3364,hihocoder1195
    傅里叶分析之掐死教程
    傅里叶分析之掐死教程
    php字符串大小写转换
    php strip_tags() 函数去除 HTML、XML 以及 PHP 的标签。
  • 原文地址:https://www.cnblogs.com/tlnshuju/p/7120953.html
Copyright © 2011-2022 走看看