zoukankan      html  css  js  c++  java
  • Leetcode: 1449. Form Largest Integer With Digits That Add up to Target

    Description

    Given an array of integers cost and an integer target. Return the maximum integer you can paint under the following rules:
    
    The cost of painting a digit (i+1) is given by cost[i] (0 indexed).
    The total cost used must be equal to target.
    Integer does not have digits 0.
    Since the answer may be too large, return it as string.
    
    If there is no way to paint any integer given the condition, return "0".
    

    Example

    Input: cost = [6,10,15,40,40,40,40,40,40], target = 47
    Output: "32211"
    

    Note

    cost.length == 9
    1 <= cost[i] <= 5000
    1 <= target <= 5000
    

    分析

    code

    第一次提交就 AC 的代码, 
    Runtime: 292 ms, faster than 60.00% of Python online submissions for Form Largest Integer With Digits That Add up to Target.
    Memory Usage: 25.1 MB, less than 39.85% of Python online submissions for Form Largest Integer With Digits That Add up to Target.
    
    class Solution(object):
        def largestNumber(self, costs, target):
            """
            :type cost: List[int]
            :type target: int
            :rtype: str
            """
            
            def mmax(a, b):
                if len(a) > len(b):
                    return a
                elif len(b) > len(a):
                    return b
                return max(a, b)
    
            helper = {}
            for i, v in enumerate(costs):
                helper[v] = str(i+1)
    
            dp = ['0' for _ in range(target+1)]
    
            for k in helper:
                try:
                    dp[k] = helper[k]
                except:
                    continue
    
            r = []
            for i in range (2, min(10, target+1)):
                for j in helper:
                    if j >= i or dp[i-j] == '0':
                        continue
                    r.append(i)
                    dp[i] = mmax(dp[i], max(dp[i-j], dp[j]) + min(dp[i-j], dp[j]))
    
            for i in r:
                helper.pop(i, 0)
    
            for i in range(10, target+1):
                for j in helper:
                    if j >= i or dp[i-j] == '0':
                        continue
                    dp[i] = mmax(dp[i], max(dp[j]+dp[i-j], dp[i-j]+dp[j]))
            return dp[-1]
    

    总结

    • 比较简单的 dp ,不应该归类为 hard 级别的 dp
  • 相关阅读:
    第一章 初识shiro
    LDAP概念
    css定位
    css随笔1
    自己动手实现信息检索系统
    IntelliJ IDEA和pycharm注册码
    俄罗斯农夫算法
    [NOIP2013]转圈游戏
    [codevs1287]矩阵乘法
    [洛谷1314]无序字母对
  • 原文地址:https://www.cnblogs.com/tmortred/p/13235218.html
Copyright © 2011-2022 走看看