zoukankan      html  css  js  c++  java
  • Leetcode: 1449. Form Largest Integer With Digits That Add up to Target

    Description

    Given an array of integers cost and an integer target. Return the maximum integer you can paint under the following rules:
    
    The cost of painting a digit (i+1) is given by cost[i] (0 indexed).
    The total cost used must be equal to target.
    Integer does not have digits 0.
    Since the answer may be too large, return it as string.
    
    If there is no way to paint any integer given the condition, return "0".
    

    Example

    Input: cost = [6,10,15,40,40,40,40,40,40], target = 47
    Output: "32211"
    

    Note

    cost.length == 9
    1 <= cost[i] <= 5000
    1 <= target <= 5000
    

    分析

    code

    第一次提交就 AC 的代码, 
    Runtime: 292 ms, faster than 60.00% of Python online submissions for Form Largest Integer With Digits That Add up to Target.
    Memory Usage: 25.1 MB, less than 39.85% of Python online submissions for Form Largest Integer With Digits That Add up to Target.
    
    class Solution(object):
        def largestNumber(self, costs, target):
            """
            :type cost: List[int]
            :type target: int
            :rtype: str
            """
            
            def mmax(a, b):
                if len(a) > len(b):
                    return a
                elif len(b) > len(a):
                    return b
                return max(a, b)
    
            helper = {}
            for i, v in enumerate(costs):
                helper[v] = str(i+1)
    
            dp = ['0' for _ in range(target+1)]
    
            for k in helper:
                try:
                    dp[k] = helper[k]
                except:
                    continue
    
            r = []
            for i in range (2, min(10, target+1)):
                for j in helper:
                    if j >= i or dp[i-j] == '0':
                        continue
                    r.append(i)
                    dp[i] = mmax(dp[i], max(dp[i-j], dp[j]) + min(dp[i-j], dp[j]))
    
            for i in r:
                helper.pop(i, 0)
    
            for i in range(10, target+1):
                for j in helper:
                    if j >= i or dp[i-j] == '0':
                        continue
                    dp[i] = mmax(dp[i], max(dp[j]+dp[i-j], dp[i-j]+dp[j]))
            return dp[-1]
    

    总结

    • 比较简单的 dp ,不应该归类为 hard 级别的 dp
  • 相关阅读:
    初识STM32标准库
    自己写库—构建库函数雏形
    使用寄存器点亮LED等
    新建工程---寄存器版
    什么是寄存器
    初识STM32
    ST-LINK驱动的安装
    MDK5使用技巧
    开发环境的搭建
    1行Python代码制作动态二维码
  • 原文地址:https://www.cnblogs.com/tmortred/p/13235218.html
Copyright © 2011-2022 走看看