zoukankan      html  css  js  c++  java
  • Leetcode: 1449. Form Largest Integer With Digits That Add up to Target

    Description

    Given an array of integers cost and an integer target. Return the maximum integer you can paint under the following rules:
    
    The cost of painting a digit (i+1) is given by cost[i] (0 indexed).
    The total cost used must be equal to target.
    Integer does not have digits 0.
    Since the answer may be too large, return it as string.
    
    If there is no way to paint any integer given the condition, return "0".
    

    Example

    Input: cost = [6,10,15,40,40,40,40,40,40], target = 47
    Output: "32211"
    

    Note

    cost.length == 9
    1 <= cost[i] <= 5000
    1 <= target <= 5000
    

    分析

    code

    第一次提交就 AC 的代码, 
    Runtime: 292 ms, faster than 60.00% of Python online submissions for Form Largest Integer With Digits That Add up to Target.
    Memory Usage: 25.1 MB, less than 39.85% of Python online submissions for Form Largest Integer With Digits That Add up to Target.
    
    class Solution(object):
        def largestNumber(self, costs, target):
            """
            :type cost: List[int]
            :type target: int
            :rtype: str
            """
            
            def mmax(a, b):
                if len(a) > len(b):
                    return a
                elif len(b) > len(a):
                    return b
                return max(a, b)
    
            helper = {}
            for i, v in enumerate(costs):
                helper[v] = str(i+1)
    
            dp = ['0' for _ in range(target+1)]
    
            for k in helper:
                try:
                    dp[k] = helper[k]
                except:
                    continue
    
            r = []
            for i in range (2, min(10, target+1)):
                for j in helper:
                    if j >= i or dp[i-j] == '0':
                        continue
                    r.append(i)
                    dp[i] = mmax(dp[i], max(dp[i-j], dp[j]) + min(dp[i-j], dp[j]))
    
            for i in r:
                helper.pop(i, 0)
    
            for i in range(10, target+1):
                for j in helper:
                    if j >= i or dp[i-j] == '0':
                        continue
                    dp[i] = mmax(dp[i], max(dp[j]+dp[i-j], dp[i-j]+dp[j]))
            return dp[-1]
    

    总结

    • 比较简单的 dp ,不应该归类为 hard 级别的 dp
  • 相关阅读:
    统计学习方法学习笔记第二章(感知机)
    filebeat句柄占用问题
    小组年终总结的汇总
    使用docker制作zookeeper镜像
    普罗米修斯在k8s上面的部署
    k8s亲和性和反亲和性的理解
    AlertManager 的在k8s集群上面的安装部署使用
    filebeat生产上面镜像制作的流程
    普罗米修斯生产上面的性能优化点
    AlertManger集群的搭建
  • 原文地址:https://www.cnblogs.com/tmortred/p/13235218.html
Copyright © 2011-2022 走看看