zoukankan      html  css  js  c++  java
  • Leetcode: 1937. Maximum Number of Points with Cost

    Description

    You are given an m x n integer matrix points (0-indexed). Starting with 0 points, you want to maximize the number of points you can get from the matrix.
    To gain points, you must pick one cell in each row. Picking the cell at coordinates (r, c) will add points[r][c] to your score.
    However, you will lose points if you pick a cell too far from the cell that you picked in the previous row. For every two adjacent rows r and r + 1 (where 0 <= r < m - 1), picking cells at coordinates (r, c1) and (r + 1, c2) will subtract abs(c1 - c2) from your score.
    Return the maximum number of points you can achieve.
    abs(x) is defined as:
    
    x for x >= 0.
    -x for x < 0.
    

    Example

    Input: points = [[1,2,3],[1,5,1],[3,1,1]]
    Output: 9
    Explanation:
    The blue cells denote the optimal cells to pick, which have coordinates (0, 2), (1, 1), and (2, 0).
    You add 3 + 5 + 3 = 11 to your score.
    However, you must subtract abs(2 - 1) + abs(1 - 0) = 2 from your score.
    Your final score is 11 - 2 = 9.
    

    Tips

    m == points.length
    n == points[r].length
    1 <= m, n <= 105
    1 <= m * n <= 105
    0 <= points[r][c] <= 105
    

    分析

    如果不需要 abs(c1 -c2),那么这题将会比较简单。加上限制条件后,作一些转换可以将 abs 消除掉
    
    #(r, c1) and (r + 1, c2) will subtract abs(c1 - c2)
    1):   dp[r+1][c2] = max( dp[r][c1] + c2 -c 1) // 保证 c2 >= c1
    2):  dp[r+1][c3] = max( dp[r][c1] + c1 -c3) //  保证 c1 >= c3
    
    化简为
    dp[r+1][c2] = c2 + max(dp[r][c1] - c1)     // c2 >= c1
    dp[r+1][c3] = -c3 + max(dp[r][c1] + c1).  // c1 >=c3
    
    
    class Solution(object):
        def maxPoints(self, points):
            """
            :type points: List[List[int]]
            :rtype: int
            """
            N = len(points)
            M = len(points[0])       
            memo = points[0]
            
            for i in range(1, N):
                tmp = [float('-inf')] * M
                m = float('-inf')
                for j in range(M):
                    m = max(m, memo[j]+j)
                    tmp[j] = -j + m + points[i][j]
                  
                m = float('-inf')
                for j in range(M-1, -1, -1):
                    m = max(m, memo[j]-j)
                    tmp[j] = max(tmp[j], points[i][j]+m +j)
                memo = tmp
            return max(memo)
    
    

    总结

    速度上战胜了 84 % 的提交, 提交 3 次通过
    性能很迷,同样的代码,再提交一次只能战胜 25 %的提交
    
    
  • 相关阅读:
    mysql存儲過程+游標的應用實例5/17
    mysql存儲過程+遊標應用之:找缺號5/19
    轉:愚公移山
    c++中的头文件
    栈和堆:生存空间
    java中的类加载
    c++中的连接
    访问static变量和方法
    子类调用构造函数的过程
    c++中变量的存储种类
  • 原文地址:https://www.cnblogs.com/tmortred/p/15256957.html
Copyright © 2011-2022 走看看