zoukankan      html  css  js  c++  java
  • Leetcode: 1937. Maximum Number of Points with Cost

    Description

    You are given an m x n integer matrix points (0-indexed). Starting with 0 points, you want to maximize the number of points you can get from the matrix.
    To gain points, you must pick one cell in each row. Picking the cell at coordinates (r, c) will add points[r][c] to your score.
    However, you will lose points if you pick a cell too far from the cell that you picked in the previous row. For every two adjacent rows r and r + 1 (where 0 <= r < m - 1), picking cells at coordinates (r, c1) and (r + 1, c2) will subtract abs(c1 - c2) from your score.
    Return the maximum number of points you can achieve.
    abs(x) is defined as:
    
    x for x >= 0.
    -x for x < 0.
    

    Example

    Input: points = [[1,2,3],[1,5,1],[3,1,1]]
    Output: 9
    Explanation:
    The blue cells denote the optimal cells to pick, which have coordinates (0, 2), (1, 1), and (2, 0).
    You add 3 + 5 + 3 = 11 to your score.
    However, you must subtract abs(2 - 1) + abs(1 - 0) = 2 from your score.
    Your final score is 11 - 2 = 9.
    

    Tips

    m == points.length
    n == points[r].length
    1 <= m, n <= 105
    1 <= m * n <= 105
    0 <= points[r][c] <= 105
    

    分析

    如果不需要 abs(c1 -c2),那么这题将会比较简单。加上限制条件后,作一些转换可以将 abs 消除掉
    
    #(r, c1) and (r + 1, c2) will subtract abs(c1 - c2)
    1):   dp[r+1][c2] = max( dp[r][c1] + c2 -c 1) // 保证 c2 >= c1
    2):  dp[r+1][c3] = max( dp[r][c1] + c1 -c3) //  保证 c1 >= c3
    
    化简为
    dp[r+1][c2] = c2 + max(dp[r][c1] - c1)     // c2 >= c1
    dp[r+1][c3] = -c3 + max(dp[r][c1] + c1).  // c1 >=c3
    
    
    class Solution(object):
        def maxPoints(self, points):
            """
            :type points: List[List[int]]
            :rtype: int
            """
            N = len(points)
            M = len(points[0])       
            memo = points[0]
            
            for i in range(1, N):
                tmp = [float('-inf')] * M
                m = float('-inf')
                for j in range(M):
                    m = max(m, memo[j]+j)
                    tmp[j] = -j + m + points[i][j]
                  
                m = float('-inf')
                for j in range(M-1, -1, -1):
                    m = max(m, memo[j]-j)
                    tmp[j] = max(tmp[j], points[i][j]+m +j)
                memo = tmp
            return max(memo)
    
    

    总结

    速度上战胜了 84 % 的提交, 提交 3 次通过
    性能很迷,同样的代码,再提交一次只能战胜 25 %的提交
    
    
  • 相关阅读:
    【整理】七大查找算法
    centos GUI界面与命令行的切换
    BogoMIPS与calibrate_delay
    Printk与sched_clock_init的一点分析
    系统启动 之 Linux系统启动概述(2)
    Linux Bootup Time
    系统启动 之 Linux系统启动概述(1)
    如何参与Linux内核开发(转)
    如何开始参与开源项目?
    非编程天才参与开源项目的14种方式(转)
  • 原文地址:https://www.cnblogs.com/tmortred/p/15256957.html
Copyright © 2011-2022 走看看