zoukankan      html  css  js  c++  java
  • Leetcode: 1937. Maximum Number of Points with Cost

    Description

    You are given an m x n integer matrix points (0-indexed). Starting with 0 points, you want to maximize the number of points you can get from the matrix.
    To gain points, you must pick one cell in each row. Picking the cell at coordinates (r, c) will add points[r][c] to your score.
    However, you will lose points if you pick a cell too far from the cell that you picked in the previous row. For every two adjacent rows r and r + 1 (where 0 <= r < m - 1), picking cells at coordinates (r, c1) and (r + 1, c2) will subtract abs(c1 - c2) from your score.
    Return the maximum number of points you can achieve.
    abs(x) is defined as:
    
    x for x >= 0.
    -x for x < 0.
    

    Example

    Input: points = [[1,2,3],[1,5,1],[3,1,1]]
    Output: 9
    Explanation:
    The blue cells denote the optimal cells to pick, which have coordinates (0, 2), (1, 1), and (2, 0).
    You add 3 + 5 + 3 = 11 to your score.
    However, you must subtract abs(2 - 1) + abs(1 - 0) = 2 from your score.
    Your final score is 11 - 2 = 9.
    

    Tips

    m == points.length
    n == points[r].length
    1 <= m, n <= 105
    1 <= m * n <= 105
    0 <= points[r][c] <= 105
    

    分析

    如果不需要 abs(c1 -c2),那么这题将会比较简单。加上限制条件后,作一些转换可以将 abs 消除掉
    
    #(r, c1) and (r + 1, c2) will subtract abs(c1 - c2)
    1):   dp[r+1][c2] = max( dp[r][c1] + c2 -c 1) // 保证 c2 >= c1
    2):  dp[r+1][c3] = max( dp[r][c1] + c1 -c3) //  保证 c1 >= c3
    
    化简为
    dp[r+1][c2] = c2 + max(dp[r][c1] - c1)     // c2 >= c1
    dp[r+1][c3] = -c3 + max(dp[r][c1] + c1).  // c1 >=c3
    
    
    class Solution(object):
        def maxPoints(self, points):
            """
            :type points: List[List[int]]
            :rtype: int
            """
            N = len(points)
            M = len(points[0])       
            memo = points[0]
            
            for i in range(1, N):
                tmp = [float('-inf')] * M
                m = float('-inf')
                for j in range(M):
                    m = max(m, memo[j]+j)
                    tmp[j] = -j + m + points[i][j]
                  
                m = float('-inf')
                for j in range(M-1, -1, -1):
                    m = max(m, memo[j]-j)
                    tmp[j] = max(tmp[j], points[i][j]+m +j)
                memo = tmp
            return max(memo)
    
    

    总结

    速度上战胜了 84 % 的提交, 提交 3 次通过
    性能很迷,同样的代码,再提交一次只能战胜 25 %的提交
    
    
  • 相关阅读:
    C# Tips Written By Andrew Troelsen
    ASP.NET:性能与缓存
    New Feature In C# 2.0
    .NET Remoting中的通道注册
    通过应用程序域AppDomain加载和卸载程序集
    Some BrainTeaser in WinDev, Can you Solve them?
    ExtJs学习笔记(24)Drag/Drop拖动功能
    wap开发体会
    关于”System.ServiceModel.Activation.WebServiceHostFactory“与"<webHttp/>"以及RestFul/启用了Ajax的WCF服务
    验证码无刷新更换
  • 原文地址:https://www.cnblogs.com/tmortred/p/15256957.html
Copyright © 2011-2022 走看看