GCD
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 812 Accepted Submission(s): 363
Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
3
1 1
10 2
10000 72
1 1
10 2
10000 72
Sample Output
1
6
260
1 /* 2 题意:求1<=X<=N 满足GCD(X,N)>=M. 3 4 思路:if(n%p==0 && p>=m) 那么gcd(n,p)=p, 5 求所有的满足与n的最大公约数是p的个数, 6 就是n/p的欧拉值。 7 因为与n/p互素的值x1,x2,x3.... 8 满足 gcd(n,x1*p)=gcd(n,x2*p)=gcd(n,x3*p).... 9 10 枚举所有的即可。 11 */ 12 13 #include<stdio.h> 14 #include<stdlib.h> 15 #include<string.h> 16 17 18 int Euler(int n) 19 { 20 int i,temp=n; 21 for(i=2;i*i<=n;i++) 22 { 23 if(n%i==0) 24 { 25 while(n%i==0) 26 n=n/i; 27 temp=temp/i*(i-1); 28 } 29 } 30 if(n!=1) 31 temp=temp/n*(n-1); 32 return temp; 33 } 34 35 void make_ini(int n,int m) 36 { 37 int i,sum=0; 38 for(i=1;i*i<=n;i++)//!! 39 { 40 if(n%i==0) 41 { 42 if(i>=m) 43 sum=sum+Euler(n/i); 44 if((n/i)!=i && (n/i)>=m)//!! 45 sum=sum+Euler(i); 46 } 47 } 48 printf("%d ",sum); 49 } 50 51 int main() 52 { 53 int T,n,m; 54 while(scanf("%d",&T)>0) 55 { 56 while(T--) 57 { 58 scanf("%d%d",&n,&m); 59 make_ini(n,m); 60 } 61 } 62 return 0; 63 }