zoukankan      html  css  js  c++  java
  • HDU 2588 GCD------欧拉函数变形

    GCD

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 812    Accepted Submission(s): 363


    Problem Description
    The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
    (a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
    Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
     
    Input
    The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
     
    Output
    For each test case,output the answer on a single line.
     
    Sample Input
    3
    1 1
    10 2
    10000 72
    Sample Output
    1
    6
    260
     1 /*
     2 题意:求1<=X<=N 满足GCD(X,N)>=M.
     3 
     4 思路:if(n%p==0 && p>=m)  那么gcd(n,p)=p,
     5       求所有的满足与n的最大公约数是p的个数,
     6       就是n/p的欧拉值。
     7       因为与n/p互素的值x1,x2,x3....
     8       满足 gcd(n,x1*p)=gcd(n,x2*p)=gcd(n,x3*p)....
     9       
    10       枚举所有的即可。
    11 */
    12 
    13 #include<stdio.h>
    14 #include<stdlib.h>
    15 #include<string.h>
    16 
    17 
    18 int Euler(int n)
    19 {
    20     int i,temp=n;
    21     for(i=2;i*i<=n;i++)
    22     {
    23         if(n%i==0)
    24         {
    25             while(n%i==0)
    26             n=n/i;
    27             temp=temp/i*(i-1);
    28         }
    29     }
    30     if(n!=1)
    31     temp=temp/n*(n-1);
    32     return temp;
    33 }
    34 
    35 void make_ini(int n,int m)
    36 {
    37     int i,sum=0;
    38     for(i=1;i*i<=n;i++)//!!
    39     {
    40         if(n%i==0)
    41         {
    42           if(i>=m)
    43           sum=sum+Euler(n/i);
    44           if((n/i)!=i && (n/i)>=m)//!!
    45           sum=sum+Euler(i);
    46         }
    47     }
    48     printf("%d
    ",sum);
    49 }
    50 
    51 int main()
    52 {
    53     int T,n,m;
    54     while(scanf("%d",&T)>0)
    55     {
    56         while(T--)
    57         {
    58             scanf("%d%d",&n,&m);
    59             make_ini(n,m);
    60         }
    61     }
    62     return 0;
    63 }
     
  • 相关阅读:
    【Auto.js images.matchTemplate() 函数的特点】
    Jquery动态bind绑定已有函数,函数自动执行的问题解决方法
    浅谈javascript的运行机制
    Git
    下拉框的点击事件
    点击其他区域菜单消失
    Chrome 中的 JavaScript 断点设置和调试技巧
    前端编辑工具有感
    我的jsonp跨域问题
    浅谈Json和jsonp
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3245055.html
Copyright © 2011-2022 走看看