zoukankan      html  css  js  c++  java
  • poj Strange Way to Express Integers 中国剩余定理

    Strange Way to Express Integers
    Time Limit: 1000MS   Memory Limit: 131072K
    Total Submissions: 8193   Accepted: 2448

    Description

    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

    Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i  k) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.

    “It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

    Since Elina is new to programming, this problem is too difficult for her. Can you help her?

    Input

    The input contains multiple test cases. Each test cases consists of some lines.

    • Line 1: Contains the integer k.
    • Lines 2 ~ k + 1: Each contains a pair of integers ai, ri (1 ≤ i  k).

    Output

    Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

    Sample Input

    2
    8 7
    11 9

    Sample Output

    31

    Hint

    All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

     

    要考虑0的情况,注意输入,,看清题意

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstdlib>
     4 #include<cstring>
     5 using namespace std;
     6 
     7 
     8 __int64 Ex_gcd(__int64 a,__int64 b,__int64 &x,__int64 &y)
     9 {
    10     if(b==0)
    11     {
    12         x=1;
    13         y=0;
    14         return a;
    15     }
    16     __int64 g=Ex_gcd(b,a%b,x,y);
    17     __int64 hxl=x-(a/b)*y;
    18     x=y;
    19     y=hxl;
    20     return g;
    21 }
    22 
    23 __int64 gcd(__int64 a,__int64 b)
    24 {
    25     if(b==0)
    26     return a;
    27     return gcd(b,a%b);
    28 }
    29 
    30 int main()
    31 {
    32     __int64 k,m1,m2,r1,r2,x,y,t,i,d,c;
    33     __int64 sum1=1,sum2;
    34     bool flag;
    35     while(scanf("%I64d",&k)>0)
    36     {
    37         scanf("%I64d%I64d",&m1,&r1);
    38         sum1=m1;sum2=m1;
    39         flag=false;
    40         for(i=2;i<=k;i++)
    41         {
    42             scanf("%I64d%I64d",&m2,&r2);
    43 
    44             if(flag==true) continue;
    45             sum1=sum1*m2;
    46             sum2=gcd(sum2,m2);
    47             d=Ex_gcd(m1,m2,x,y);
    48             c=r2-r1;
    49             if(c%d)
    50             {
    51                 flag=true;
    52                 continue;
    53             }
    54             x=c/d*x;
    55             t=m2/d;
    56             x=(x%t +t)%t;
    57             r1=m1*x+r1;
    58             m1=m1*m2/d;
    59         }
    60         if(flag==true)
    61         {
    62             printf("-1
    ");
    63             continue;
    64         }
    65         if(r1==0)
    66         {
    67             r1=sum1/sum2;
    68         }
    69         printf("%I64d
    ",r1);
    70     }
    71     return 0;
    72 }

     

  • 相关阅读:
    Relativity 01: Physical Meaning of Geometrical Propositions
    Algo 2: Asymptotic Order of Growth
    CShop Project : BeanUtils工具的使用
    137 __getattribute__
    134 isinstance和issubclass
    135 反射(hasattr和getattr和setattr和delattr)
    133 面向对象进阶实战之选课系统
    132 面向对象进阶小结
    131 类和对象的绑定方法及非绑定方法
    130 类的property特性
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3261023.html
Copyright © 2011-2022 走看看