zoukankan      html  css  js  c++  java
  • hdu 3415 Max Sum of Max-K-sub-sequence 单调队列。

    Max Sum of Max-K-sub-sequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 5335    Accepted Submission(s): 1939


    Problem Description
    Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
    Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
     
    Input
    The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
    Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
     
    Output
    For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
     
    Sample Input
    4
    6 3
    6 -1 2 -6 5 -5
    6 4
    6 -1 2 -6 5 -5
    6 3
    -1 2 -6 5 -5 6
    6 6
    -1 -1 -1 -1 -1 -1
     
    Sample Output
     7 1 3
    7 1 3
    7 6 2
    -1 1 1
    Author
    shǎ崽@HDU
     
    Source
     
    Recommend
    lcy   |   We have carefully selected several similar problems for you:  3423 3417 3418 3419 3421 
     
     
     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstdlib>
     4 #include<cstring>
     5 #include<cstdlib>
     6 using namespace std;
     7 
     8 int a[200004],s[200004];
     9 int head,tail,len,n,k;
    10 typedef struct
    11 {
    12     int sum;
    13     int s,e;
    14 }Queue;
    15 Queue q[200004],tom,tmp;
    16 
    17 void Init()
    18 {
    19     int i;
    20     for(i=1;i<=n;i++)
    21         scanf("%d",&a[i]);
    22     len=n+k;
    23     for(i=n+1;i<=len;i++)
    24         a[i]=a[i-n];
    25     for(s[0]=0,i=1;i<=len;i++)
    26         s[i]=a[i]+s[i-1];
    27     n=n+k;
    28     len=len-k;
    29 }
    30 int main()
    31 {
    32     int T,i;
    33     scanf("%d",&T);
    34     while(T--)
    35     {
    36         scanf("%d%d",&n,&k);
    37         Init();
    38         head=0;tail=0;
    39         tom.sum=s[1];tom.s=1;tom.e=1;
    40         q[0]=tom;
    41         for(i=2;i<=n;i++)
    42         {
    43             tmp.sum=s[i];
    44             tmp.s=1;
    45             tmp.e=i;
    46             while( head<=tail && q[tail].sum>tmp.sum ) tail--;
    47             q[++tail]=tmp;
    48             while( head<=tail && q[head].e+k<tmp.e ) head++;
    49 
    50             if(tmp.sum-q[head].sum>tom.sum && tmp.e!=q[head].e)
    51             {
    52                 tom.sum=tmp.sum-q[head].sum;
    53                 tom.s=q[head].e+1;
    54                 tom.e=tmp.e;
    55             }
    56             else if( i<=k && tmp.sum>tom.sum)
    57             {
    58                 tom=tmp;
    59             }
    60         }
    61         printf("%d",tom.sum);
    62         if( tom.s>len ) tom.s-=len;
    63         if( tom.e>len ) tom.e-=len;
    64         printf(" %d %d
    ",tom.s,tom.e);
    65     }
    66     return 0;
    67 }
  • 相关阅读:
    封装异常处理之坑
    30multipart/form-data和application/x-www-form-urlencoded的区别(二)urlencoded之自动deocde
    使用MAT时的Shallow Size和 Retained Size的区别
    当动态代理遇到ioc
    线程池的原理
    synchroned原理与对象头(yet)
    mysql压力测试与qps监控
    一种mysql jvm死锁
    Android Jni变量对照表
    结构体中使用函数指针
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3558256.html
Copyright © 2011-2022 走看看