zoukankan      html  css  js  c++  java
  • poj 1849 Two 树形dp

    Two
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 1092   Accepted: 527

    Description

    The city consists of intersections and streets that connect them. 

    Heavy snow covered the city so the mayor Milan gave to the winter-service a list of streets that have to be cleaned of snow. These streets are chosen such that the number of streets is as small as possible but still every two intersections to be connected i.e. between every two intersections there will be exactly one path. The winter service consists of two snow plovers and two drivers, Mirko and Slavko, and their starting position is on one of the intersections. 

    The snow plover burns one liter of fuel per meter (even if it is driving through a street that has already been cleared of snow) and it has to clean all streets from the list in such order so the total fuel spent is minimal. When all the streets are cleared of snow, the snow plovers are parked on the last intersection they visited. Mirko and Slavko don’t have to finish their plowing on the same intersection. 

    Write a program that calculates the total amount of fuel that the snow plovers will spend. 

    Input

    The first line of the input contains two integers: N and S, 1 <= N <= 100000, 1 <= S <= N. N is the total number of intersections; S is ordinal number of the snow plovers starting intersection. Intersections are marked with numbers 1...N. 

    Each of the next N-1 lines contains three integers: A, B and C, meaning that intersections A and B are directly connected by a street and that street's length is C meters, 1 <= C <= 1000. 

    Output

    Write to the output the minimal amount of fuel needed to clean all streets.

    Sample Input

    5 2
    1 2 1
    2 3 2
    3 4 2
    4 5 1
    

    Sample Output

    6

    Source

     
     
     
     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<vector>
     6 #include<queue>
     7 using namespace std;
     8 
     9 vector<int>Q[100002];
    10 vector<int>val[100002];
    11 int num[100002];
    12 bool use[100002];
    13 int dp[100002][3];
    14 
    15 void add(int x,int y,int c)
    16 {
    17     Q[x].push_back(y);
    18     val[x].push_back(c);
    19     num[x]++;
    20 }
    21 int min(int x,int y)
    22 {
    23     return x>y ? y:x;
    24 }
    25 void dfs(int k)
    26 {
    27     int i,j,s,t,cur;
    28     use[k]=true;
    29     for(i=0;i<num[k];i++)
    30     {
    31         t=Q[k][i];
    32         if(use[t]==true)continue;
    33         dfs(t);
    34         for(j=2;j>=0;j--)
    35         {
    36             dp[k][j]=dp[k][j]+2*val[k][i]+dp[t][0];
    37             for(s=1;s<=j;s++)
    38             {
    39                 dp[k][j]=min(dp[k][j],dp[k][j-s]+dp[t][s]+s*val[k][i]);
    40             }
    41         }
    42     }
    43 }
    44 int main()
    45 {
    46     int n,s,i;
    47     int x,y,c;
    48     while(scanf("%d%d",&n,&s)>0)
    49     {
    50         for(i=0;i<=n;i++)
    51         {
    52             Q[i].clear();
    53             val[i].clear();
    54             num[i]=0;
    55             use[i]=false;
    56         }
    57         memset(dp,0,sizeof(dp));
    58         for(i=1;i<n;i++)
    59         {
    60             scanf("%d%d%d",&x,&y,&c);
    61             add(x,y,c);
    62             add(y,x,c);
    63         }
    64         dfs(s);
    65         printf("%d
    ",dp[s][2]);
    66     }
    67     return 0;
    68 }
  • 相关阅读:
    MIT Linear Algebra#4 Determinants
    MIT Linear Algebra#3 Orthogonality
    MIT Linear Algebra#2 Vector Spaces and Subspaces
    MIT Linear Algebra#1 Solving Linear Equations
    MIT Linear Algebra#0 Introduction to Vectors
    Image Filter and Recover
    Computational Geometry
    TOP-K Problems
    pat 1151 LCA in a Binary Tree
    上传文件到git仓库中
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3614607.html
Copyright © 2011-2022 走看看