zoukankan      html  css  js  c++  java
  • poj 1849 Two 树形dp

    Two
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 1092   Accepted: 527

    Description

    The city consists of intersections and streets that connect them. 

    Heavy snow covered the city so the mayor Milan gave to the winter-service a list of streets that have to be cleaned of snow. These streets are chosen such that the number of streets is as small as possible but still every two intersections to be connected i.e. between every two intersections there will be exactly one path. The winter service consists of two snow plovers and two drivers, Mirko and Slavko, and their starting position is on one of the intersections. 

    The snow plover burns one liter of fuel per meter (even if it is driving through a street that has already been cleared of snow) and it has to clean all streets from the list in such order so the total fuel spent is minimal. When all the streets are cleared of snow, the snow plovers are parked on the last intersection they visited. Mirko and Slavko don’t have to finish their plowing on the same intersection. 

    Write a program that calculates the total amount of fuel that the snow plovers will spend. 

    Input

    The first line of the input contains two integers: N and S, 1 <= N <= 100000, 1 <= S <= N. N is the total number of intersections; S is ordinal number of the snow plovers starting intersection. Intersections are marked with numbers 1...N. 

    Each of the next N-1 lines contains three integers: A, B and C, meaning that intersections A and B are directly connected by a street and that street's length is C meters, 1 <= C <= 1000. 

    Output

    Write to the output the minimal amount of fuel needed to clean all streets.

    Sample Input

    5 2
    1 2 1
    2 3 2
    3 4 2
    4 5 1
    

    Sample Output

    6

    Source

     
     
     
     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<vector>
     6 #include<queue>
     7 using namespace std;
     8 
     9 vector<int>Q[100002];
    10 vector<int>val[100002];
    11 int num[100002];
    12 bool use[100002];
    13 int dp[100002][3];
    14 
    15 void add(int x,int y,int c)
    16 {
    17     Q[x].push_back(y);
    18     val[x].push_back(c);
    19     num[x]++;
    20 }
    21 int min(int x,int y)
    22 {
    23     return x>y ? y:x;
    24 }
    25 void dfs(int k)
    26 {
    27     int i,j,s,t,cur;
    28     use[k]=true;
    29     for(i=0;i<num[k];i++)
    30     {
    31         t=Q[k][i];
    32         if(use[t]==true)continue;
    33         dfs(t);
    34         for(j=2;j>=0;j--)
    35         {
    36             dp[k][j]=dp[k][j]+2*val[k][i]+dp[t][0];
    37             for(s=1;s<=j;s++)
    38             {
    39                 dp[k][j]=min(dp[k][j],dp[k][j-s]+dp[t][s]+s*val[k][i]);
    40             }
    41         }
    42     }
    43 }
    44 int main()
    45 {
    46     int n,s,i;
    47     int x,y,c;
    48     while(scanf("%d%d",&n,&s)>0)
    49     {
    50         for(i=0;i<=n;i++)
    51         {
    52             Q[i].clear();
    53             val[i].clear();
    54             num[i]=0;
    55             use[i]=false;
    56         }
    57         memset(dp,0,sizeof(dp));
    58         for(i=1;i<n;i++)
    59         {
    60             scanf("%d%d%d",&x,&y,&c);
    61             add(x,y,c);
    62             add(y,x,c);
    63         }
    64         dfs(s);
    65         printf("%d
    ",dp[s][2]);
    66     }
    67     return 0;
    68 }
  • 相关阅读:
    几个简单的定律
    poj 2443 Set Operation 位运算
    博弈论 wythff 博弈
    BZOJ 2120 树状数组套平衡树
    HDU 1392 凸包
    ZOJ 1648 线段相交
    HDU 1756 点在多边形内
    SPOJ 1811 LCS 后缀自动机
    BZOJ 1901 树状数组+函数式线段树
    HDU 1086 线段相交(不规范相交模板)
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3614607.html
Copyright © 2011-2022 走看看