zoukankan      html  css  js  c++  java
  • zoj Calculate the Function

    Calculate the Function

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    You are given a list of numbers A1 A2 .. AN and M queries. For the i-th query:

    • The query has two parameters Li and Ri.
    • The query will define a function Fi(x) on the domain [Li, Ri]Z.
    • Fi(Li) = ALi
    • Fi(Li + 1) = A(Li + 1)
    • for all x >= Li + 2, Fi(x) = Fi(x - 1) + Fi(x - 2) × Ax

    You task is to calculate Fi(Ri) for each query. Because the answer can be very large, you should output the remainder of the answer divided by 1000000007.

    Input

    There are multiple test cases. The first line of input is an integer T indicates the number of test cases. For each test case:

    The first line contains two integers N, M (1 <= N, M <= 100000). The second line contains N integers A1 A2 .. AN (1 <= Ai <= 1000000000).

    The next M lines, each line is a query with two integer parameters Li, Ri (1 <= Li <= Ri <= N).

    Output

    For each test case, output the remainder of the answer divided by 1000000007.

    Sample Input

    1
    4 7
    1 2 3 4
    1 1
    1 2
    1 3
    1 4
    2 4
    3 4
    4 4
    

    Sample Output

    1
    2
    5
    13
    11
    4
    4
    

    Author: CHEN, Weijie
    Source: The 14th Zhejiang University Programming Contest

     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 using namespace std;
     6 
     7 typedef long long LL;
     8 
     9 int mod=1000000007;
    10 int ax[100002];
    11 struct node
    12 {
    13     LL a,b,c,d;
    14     int l,r;
    15 } f[400008];
    16 
    17 void build(int l,int r,int n)
    18 {
    19     int mid=(l+r)/2;
    20     f[n].l=l;
    21     f[n].r=r;
    22     if(l==r)
    23     {
    24         f[n].a=0;
    25         f[n].b=ax[l];
    26         f[n].c=1;
    27         f[n].d=1;
    28         return;
    29     }
    30     build(l,mid,n*2);
    31     build(mid+1,r,n*2+1);
    32     f[n].a=((f[n<<1].a*f[(n<<1)+1].a)%mod+f[n<<1].b*f[(n<<1)+1].c)%mod;
    33     f[n].b=((f[n<<1].a*f[(n<<1)+1].b)%mod+f[n<<1].b*f[(n<<1)+1].d)%mod;
    34     f[n].c=((f[n<<1].c*f[(n<<1)+1].a)%mod+f[n<<1].d*f[(n<<1)+1].c)%mod;
    35     f[n].d=((f[n<<1].c*f[(n<<1)+1].b)%mod+f[n<<1].d*f[(n<<1)+1].d)%mod;
    36 }
    37 node serch1(int l,int r,int n)
    38 {
    39     int mid=(f[n].l+f[n].r)/2;
    40     node n1,n2,n3;
    41 
    42     if(f[n].l==l && f[n].r==r)
    43     {
    44         return f[n];
    45     }
    46     if(mid>=r)
    47         return serch1(l,r,n*2);
    48     else if(mid<l)
    49         return serch1(l,r,n*2+1);
    50     else
    51     {
    52         n1=serch1(l,mid,n*2);
    53         n2=serch1(mid+1,r,n*2+1);
    54         n3.a=((n1.a*n2.a)%mod+(n1.b*n2.c)%mod)%mod;
    55         n3.b=((n1.a*n2.b)%mod+(n1.b*n2.d)%mod)%mod;
    56         n3.c=((n1.c*n2.a)%mod+(n1.d*n2.c)%mod)%mod;
    57         n3.d=((n1.c*n2.b)%mod+(n1.d*n2.d)%mod)%mod;
    58     }
    59     return n3;
    60 }
    61 int main()
    62 {
    63     int T;
    64     int i,j,n,m,x,y;
    65     LL sum1;
    66     node cur;
    67     scanf("%d",&T);
    68     while(T--)
    69     {
    70         scanf("%d%d",&n,&m);
    71         for(i=1; i<=n; i++)
    72             scanf("%d",&ax[i]);
    73         build(1,n,1);
    74         for(j=1; j<=m; j++)
    75         {
    76             scanf("%d%d",&x,&y);
    77             if(y-x<2)
    78             {
    79                 printf("%d
    ",ax[y]);
    80             }
    81             else
    82             {
    83                 cur=serch1(x+2,y,1);
    84                 sum1=((cur.b*ax[x])%mod+(cur.d*ax[x+1])%mod)%mod;
    85                 printf("%lld
    ",sum1);
    86             }
    87         }
    88     }
    89     return 0;
    90 }
  • 相关阅读:
    看过设计模式第一章的心得
    支付宝支付过程填坑
    C# 合并只要有交集的所有集合
    C#中的反射 Reflection
    动态更改配置文件
    六种弹窗
    Respone弹窗
    Aspose是一个很强大的控件,可以用来操作word,excel,ppt等文件
    使用ECharts报表统计公司考勤加班,大家加班多吗?
    排污许可管理条例-中华人民共和国国务院令第736号
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3651216.html
Copyright © 2011-2022 走看看