zoukankan      html  css  js  c++  java
  • zoj Calculate the Function

    Calculate the Function

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    You are given a list of numbers A1 A2 .. AN and M queries. For the i-th query:

    • The query has two parameters Li and Ri.
    • The query will define a function Fi(x) on the domain [Li, Ri]Z.
    • Fi(Li) = ALi
    • Fi(Li + 1) = A(Li + 1)
    • for all x >= Li + 2, Fi(x) = Fi(x - 1) + Fi(x - 2) × Ax

    You task is to calculate Fi(Ri) for each query. Because the answer can be very large, you should output the remainder of the answer divided by 1000000007.

    Input

    There are multiple test cases. The first line of input is an integer T indicates the number of test cases. For each test case:

    The first line contains two integers N, M (1 <= N, M <= 100000). The second line contains N integers A1 A2 .. AN (1 <= Ai <= 1000000000).

    The next M lines, each line is a query with two integer parameters Li, Ri (1 <= Li <= Ri <= N).

    Output

    For each test case, output the remainder of the answer divided by 1000000007.

    Sample Input

    1
    4 7
    1 2 3 4
    1 1
    1 2
    1 3
    1 4
    2 4
    3 4
    4 4
    

    Sample Output

    1
    2
    5
    13
    11
    4
    4
    

    Author: CHEN, Weijie
    Source: The 14th Zhejiang University Programming Contest

     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 using namespace std;
     6 
     7 typedef long long LL;
     8 
     9 int mod=1000000007;
    10 int ax[100002];
    11 struct node
    12 {
    13     LL a,b,c,d;
    14     int l,r;
    15 } f[400008];
    16 
    17 void build(int l,int r,int n)
    18 {
    19     int mid=(l+r)/2;
    20     f[n].l=l;
    21     f[n].r=r;
    22     if(l==r)
    23     {
    24         f[n].a=0;
    25         f[n].b=ax[l];
    26         f[n].c=1;
    27         f[n].d=1;
    28         return;
    29     }
    30     build(l,mid,n*2);
    31     build(mid+1,r,n*2+1);
    32     f[n].a=((f[n<<1].a*f[(n<<1)+1].a)%mod+f[n<<1].b*f[(n<<1)+1].c)%mod;
    33     f[n].b=((f[n<<1].a*f[(n<<1)+1].b)%mod+f[n<<1].b*f[(n<<1)+1].d)%mod;
    34     f[n].c=((f[n<<1].c*f[(n<<1)+1].a)%mod+f[n<<1].d*f[(n<<1)+1].c)%mod;
    35     f[n].d=((f[n<<1].c*f[(n<<1)+1].b)%mod+f[n<<1].d*f[(n<<1)+1].d)%mod;
    36 }
    37 node serch1(int l,int r,int n)
    38 {
    39     int mid=(f[n].l+f[n].r)/2;
    40     node n1,n2,n3;
    41 
    42     if(f[n].l==l && f[n].r==r)
    43     {
    44         return f[n];
    45     }
    46     if(mid>=r)
    47         return serch1(l,r,n*2);
    48     else if(mid<l)
    49         return serch1(l,r,n*2+1);
    50     else
    51     {
    52         n1=serch1(l,mid,n*2);
    53         n2=serch1(mid+1,r,n*2+1);
    54         n3.a=((n1.a*n2.a)%mod+(n1.b*n2.c)%mod)%mod;
    55         n3.b=((n1.a*n2.b)%mod+(n1.b*n2.d)%mod)%mod;
    56         n3.c=((n1.c*n2.a)%mod+(n1.d*n2.c)%mod)%mod;
    57         n3.d=((n1.c*n2.b)%mod+(n1.d*n2.d)%mod)%mod;
    58     }
    59     return n3;
    60 }
    61 int main()
    62 {
    63     int T;
    64     int i,j,n,m,x,y;
    65     LL sum1;
    66     node cur;
    67     scanf("%d",&T);
    68     while(T--)
    69     {
    70         scanf("%d%d",&n,&m);
    71         for(i=1; i<=n; i++)
    72             scanf("%d",&ax[i]);
    73         build(1,n,1);
    74         for(j=1; j<=m; j++)
    75         {
    76             scanf("%d%d",&x,&y);
    77             if(y-x<2)
    78             {
    79                 printf("%d
    ",ax[y]);
    80             }
    81             else
    82             {
    83                 cur=serch1(x+2,y,1);
    84                 sum1=((cur.b*ax[x])%mod+(cur.d*ax[x+1])%mod)%mod;
    85                 printf("%lld
    ",sum1);
    86             }
    87         }
    88     }
    89     return 0;
    90 }
  • 相关阅读:
    P4720 【模板】扩展卢卡斯
    P3211 [HNOI2011]XOR和路径
    ZOJ 3329 One Person Game
    CF817F MEX Queries
    P3239 [HNOI2015]亚瑟王
    P3412 仓鼠找sugar II
    P4111 [HEOI2015]小Z的房间
    P4008 [NOI2003]文本编辑器
    CF451E Devu and Flowers
    P3975 [TJOI2015]弦论
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3651216.html
Copyright © 2011-2022 走看看